Properties

Label 1320.2.p
Level $1320$
Weight $2$
Character orbit 1320.p
Rep. character $\chi_{1320}(461,\cdot)$
Character field $\Q$
Dimension $192$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1320.p (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 264 \)
Character field: \(\Q\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1320, [\chi])\).

Total New Old
Modular forms 296 192 104
Cusp forms 280 192 88
Eisenstein series 16 0 16

Trace form

\( 192 q - 32 q^{16} - 28 q^{22} + 192 q^{25} + 8 q^{33} + 24 q^{34} + 36 q^{36} + 64 q^{42} + 64 q^{48} - 192 q^{49} - 64 q^{58} + 28 q^{60} - 20 q^{66} - 24 q^{70} + 32 q^{78} + 16 q^{81} + 8 q^{82} - 36 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1320, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1320, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1320, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 2}\)