Properties

Label 1323.2.c
Level $1323$
Weight $2$
Character orbit 1323.c
Rep. character $\chi_{1323}(1322,\cdot)$
Character field $\Q$
Dimension $54$
Newform subspaces $6$
Sturm bound $336$
Trace bound $22$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(336\)
Trace bound: \(22\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1323, [\chi])\).

Total New Old
Modular forms 192 54 138
Cusp forms 144 54 90
Eisenstein series 48 0 48

Trace form

\( 54 q - 56 q^{4} + O(q^{10}) \) \( 54 q - 56 q^{4} + 92 q^{16} + 48 q^{22} + 38 q^{25} + 24 q^{37} + 6 q^{43} - 12 q^{46} - 104 q^{58} - 144 q^{64} + 44 q^{67} - 36 q^{79} + 44 q^{85} - 20 q^{88} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1323, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1323.2.c.a 1323.c 21.c $2$ $10.564$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 189.2.p.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+2 q^{4}-4\beta q^{13}+4 q^{16}-3\beta q^{19}+\cdots\)
1323.2.c.b 1323.c 21.c $4$ $10.564$ \(\Q(\sqrt{-3}, \sqrt{-5})\) None 189.2.p.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-3q^{4}-\beta _{1}q^{8}-2\beta _{1}q^{11}+\cdots\)
1323.2.c.c 1323.c 21.c $4$ $10.564$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 189.2.p.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{3}q^{5}+2\beta _{1}q^{8}+2\beta _{2}q^{10}+\cdots\)
1323.2.c.d 1323.c 21.c $12$ $10.564$ 12.0.\(\cdots\).1 None 189.2.p.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{8}q^{2}+(-1-\beta _{6})q^{4}+\beta _{1}q^{5}+(-\beta _{8}+\cdots)q^{8}+\cdots\)
1323.2.c.e 1323.c 21.c $16$ $10.564$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1323.2.c.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{7}q^{2}+(-1-\beta _{1}-\beta _{4})q^{4}+(-\beta _{3}+\cdots)q^{5}+\cdots\)
1323.2.c.f 1323.c 21.c $16$ $10.564$ 16.0.\(\cdots\).5 None 1323.2.c.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}+(-1+\beta _{13})q^{4}-\beta _{2}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1323, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1323, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)