Properties

Label 1323.2.c
Level 13231323
Weight 22
Character orbit 1323.c
Rep. character χ1323(1322,)\chi_{1323}(1322,\cdot)
Character field Q\Q
Dimension 5454
Newform subspaces 66
Sturm bound 336336
Trace bound 2222

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1323=3372 1323 = 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1323.c (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q\Q
Newform subspaces: 6 6
Sturm bound: 336336
Trace bound: 2222
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(1323,[χ])M_{2}(1323, [\chi]).

Total New Old
Modular forms 192 54 138
Cusp forms 144 54 90
Eisenstein series 48 0 48

Trace form

54q56q4+92q16+48q22+38q25+24q37+6q4312q46104q58144q64+44q6736q79+44q8520q88+O(q100) 54 q - 56 q^{4} + 92 q^{16} + 48 q^{22} + 38 q^{25} + 24 q^{37} + 6 q^{43} - 12 q^{46} - 104 q^{58} - 144 q^{64} + 44 q^{67} - 36 q^{79} + 44 q^{85} - 20 q^{88}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1323,[χ])S_{2}^{\mathrm{new}}(1323, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1323.2.c.a 1323.c 21.c 22 10.56410.564 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 189.2.p.a 00 00 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+2q44βq13+4q163βq19+q+2 q^{4}-4\beta q^{13}+4 q^{16}-3\beta q^{19}+\cdots
1323.2.c.b 1323.c 21.c 44 10.56410.564 Q(3,5)\Q(\sqrt{-3}, \sqrt{-5}) None 189.2.p.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q23q4β1q82β1q11+q+\beta _{1}q^{2}-3q^{4}-\beta _{1}q^{8}-2\beta _{1}q^{11}+\cdots
1323.2.c.c 1323.c 21.c 44 10.56410.564 Q(2,3)\Q(\sqrt{-2}, \sqrt{-3}) None 189.2.p.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2+β3q5+2β1q8+2β2q10+q+\beta _{1}q^{2}+\beta _{3}q^{5}+2\beta _{1}q^{8}+2\beta _{2}q^{10}+\cdots
1323.2.c.d 1323.c 21.c 1212 10.56410.564 12.0.\cdots.1 None 189.2.p.d 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β8q2+(1β6)q4+β1q5+(β8+)q8+q+\beta _{8}q^{2}+(-1-\beta _{6})q^{4}+\beta _{1}q^{5}+(-\beta _{8}+\cdots)q^{8}+\cdots
1323.2.c.e 1323.c 21.c 1616 10.56410.564 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 1323.2.c.e 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ7q2+(1β1β4)q4+(β3+)q5+q-\beta _{7}q^{2}+(-1-\beta _{1}-\beta _{4})q^{4}+(-\beta _{3}+\cdots)q^{5}+\cdots
1323.2.c.f 1323.c 21.c 1616 10.56410.564 16.0.\cdots.5 None 1323.2.c.f 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β5q2+(1+β13)q4β2q5+q+\beta _{5}q^{2}+(-1+\beta _{13})q^{4}-\beta _{2}q^{5}+\cdots

Decomposition of S2old(1323,[χ])S_{2}^{\mathrm{old}}(1323, [\chi]) into lower level spaces

S2old(1323,[χ]) S_{2}^{\mathrm{old}}(1323, [\chi]) \simeq S2new(63,[χ])S_{2}^{\mathrm{new}}(63, [\chi])4^{\oplus 4}\oplusS2new(147,[χ])S_{2}^{\mathrm{new}}(147, [\chi])3^{\oplus 3}\oplusS2new(189,[χ])S_{2}^{\mathrm{new}}(189, [\chi])2^{\oplus 2}\oplusS2new(441,[χ])S_{2}^{\mathrm{new}}(441, [\chi])2^{\oplus 2}