Properties

Label 1323.2.g
Level $1323$
Weight $2$
Character orbit 1323.g
Rep. character $\chi_{1323}(361,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $72$
Newform subspaces $8$
Sturm bound $336$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(336\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1323, [\chi])\).

Total New Old
Modular forms 384 88 296
Cusp forms 288 72 216
Eisenstein series 96 16 80

Trace form

\( 72 q + q^{2} - 33 q^{4} - 10 q^{5} + 12 q^{8} + 6 q^{10} + 6 q^{11} + 3 q^{13} - 27 q^{16} + 9 q^{17} + 4 q^{20} + 8 q^{23} + 42 q^{25} + 16 q^{26} + 18 q^{29} + 3 q^{31} - 41 q^{32} + 3 q^{37} - 38 q^{38}+ \cdots + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1323, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1323.2.g.a 1323.g 63.g $2$ $10.564$ \(\Q(\sqrt{-3}) \) None 63.2.g.a \(1\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{4}-q^{5}+3q^{8}+\cdots\)
1323.2.g.b 1323.g 63.g $6$ $10.564$ 6.0.309123.1 None 63.2.f.b \(-1\) \(0\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{5})q^{2}+(-1+\beta _{2}+\beta _{4}+\beta _{5})q^{4}+\cdots\)
1323.2.g.c 1323.g 63.g $6$ $10.564$ 6.0.309123.1 None 63.2.f.b \(-1\) \(0\) \(10\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{5})q^{2}+(-1+\beta _{2}+\beta _{4}+\beta _{5})q^{4}+\cdots\)
1323.2.g.d 1323.g 63.g $6$ $10.564$ \(\Q(\zeta_{18})\) None 63.2.f.a \(3\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta_{5}-\beta_{4}-\beta_{3}+\beta_1)q^{2}+(2\beta_{5}-\beta_{3}+\beta_{2}+\cdots-1)q^{4}+\cdots\)
1323.2.g.e 1323.g 63.g $6$ $10.564$ \(\Q(\zeta_{18})\) None 63.2.f.a \(3\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta_{5}-\beta_{4}-\beta_{3}+\beta_1)q^{2}+(2\beta_{5}-\beta_{3}+\beta_{2}+\cdots-1)q^{4}+\cdots\)
1323.2.g.f 1323.g 63.g $10$ $10.564$ 10.0.\(\cdots\).1 None 63.2.g.b \(-2\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-\beta _{3}+\beta _{6}+\beta _{7})q^{4}+(-1+\cdots)q^{5}+\cdots\)
1323.2.g.g 1323.g 63.g $12$ $10.564$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 441.2.f.g \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{6}q^{2}+(-\beta _{1}+\beta _{4}-\beta _{5}+\beta _{6}-\beta _{7}+\cdots)q^{4}+\cdots\)
1323.2.g.h 1323.g 63.g $24$ $10.564$ None 441.2.f.h \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1323, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1323, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)