Defining parameters
Level: | \( N \) | \(=\) | \( 1331 = 11^{3} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1331.d (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(121\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1331, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 20 | 44 |
Cusp forms | 20 | 20 | 0 |
Eisenstein series | 44 | 0 | 44 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 20 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1331, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1331.1.d.a | $20$ | $0.664$ | 20.0.\(\cdots\).1 | $D_{11}$ | \(\Q(\sqrt{-11}) \) | None | \(0\) | \(1\) | \(1\) | \(0\) | \(q-\beta _{13}q^{3}+\beta _{9}q^{4}+(\beta _{8}+\beta _{11}+\beta _{12}+\cdots)q^{5}+\cdots\) |