Properties

Label 1331.2.a
Level $1331$
Weight $2$
Character orbit 1331.a
Rep. character $\chi_{1331}(1,\cdot)$
Character field $\Q$
Dimension $100$
Newform subspaces $6$
Sturm bound $242$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1331 = 11^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1331.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(242\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1331))\).

Total New Old
Modular forms 132 100 32
Cusp forms 111 100 11
Eisenstein series 21 0 21

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)Dim
\(+\)\(40\)
\(-\)\(60\)

Trace form

\( 100 q - q^{3} + 100 q^{4} - q^{5} + 99 q^{9} - 4 q^{12} - 4 q^{14} - 5 q^{15} + 96 q^{16} - 8 q^{20} - 3 q^{23} + 97 q^{25} - 6 q^{26} - 7 q^{27} - 5 q^{31} - 8 q^{34} + 86 q^{36} - 7 q^{37} - 12 q^{38}+ \cdots + 67 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1331))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11
1331.2.a.a 1331.a 1.a $5$ $10.628$ \(\Q(\zeta_{22})^+\) \(\Q(\sqrt{-11}) \) 1331.2.a.a \(0\) \(-5\) \(-4\) \(0\) $+$ $N(\mathrm{U}(1))$ \(q+(-1-\beta _{2}+\beta _{4})q^{3}-2q^{4}+(-2+\cdots)q^{5}+\cdots\)
1331.2.a.b 1331.a 1.a $5$ $10.628$ \(\Q(\zeta_{22})^+\) \(\Q(\sqrt{-11}) \) 1331.2.a.b \(0\) \(6\) \(7\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q+(2+\beta _{2}-2\beta _{3}+\beta _{4})q^{3}-2q^{4}+(1+\cdots)q^{5}+\cdots\)
1331.2.a.c 1331.a 1.a $10$ $10.628$ 10.10.\(\cdots\).1 None 1331.2.a.c \(0\) \(-2\) \(-12\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{2}q^{3}+(1+\beta _{2})q^{4}+(-2+\cdots)q^{5}+\cdots\)
1331.2.a.d 1331.a 1.a $25$ $10.628$ None 1331.2.a.d \(-5\) \(-3\) \(-3\) \(-19\) $+$ $\mathrm{SU}(2)$
1331.2.a.e 1331.a 1.a $25$ $10.628$ None 1331.2.a.d \(5\) \(-3\) \(-3\) \(19\) $-$ $\mathrm{SU}(2)$
1331.2.a.f 1331.a 1.a $30$ $10.628$ None 1331.2.a.f \(0\) \(6\) \(14\) \(0\) $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1331))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1331)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 2}\)