Defining parameters
Level: | \( N \) | \(=\) | \( 1331 = 11^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1331.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(242\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1331))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 132 | 100 | 32 |
Cusp forms | 111 | 100 | 11 |
Eisenstein series | 21 | 0 | 21 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(11\) | Dim |
---|---|
\(+\) | \(40\) |
\(-\) | \(60\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1331))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 11 | |||||||
1331.2.a.a | $5$ | $10.628$ | \(\Q(\zeta_{22})^+\) | \(\Q(\sqrt{-11}) \) | \(0\) | \(-5\) | \(-4\) | \(0\) | $+$ | \(q+(-1-\beta _{2}+\beta _{4})q^{3}-2q^{4}+(-2+\cdots)q^{5}+\cdots\) | |
1331.2.a.b | $5$ | $10.628$ | \(\Q(\zeta_{22})^+\) | \(\Q(\sqrt{-11}) \) | \(0\) | \(6\) | \(7\) | \(0\) | $-$ | \(q+(2+\beta _{2}-2\beta _{3}+\beta _{4})q^{3}-2q^{4}+(1+\cdots)q^{5}+\cdots\) | |
1331.2.a.c | $10$ | $10.628$ | 10.10.\(\cdots\).1 | None | \(0\) | \(-2\) | \(-12\) | \(0\) | $+$ | \(q+\beta _{1}q^{2}-\beta _{2}q^{3}+(1+\beta _{2})q^{4}+(-2+\cdots)q^{5}+\cdots\) | |
1331.2.a.d | $25$ | $10.628$ | None | \(-5\) | \(-3\) | \(-3\) | \(-19\) | $+$ | |||
1331.2.a.e | $25$ | $10.628$ | None | \(5\) | \(-3\) | \(-3\) | \(19\) | $-$ | |||
1331.2.a.f | $30$ | $10.628$ | None | \(0\) | \(6\) | \(14\) | \(0\) | $-$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1331))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1331)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 2}\)