Properties

Label 1332.1.bj
Level $1332$
Weight $1$
Character orbit 1332.bj
Rep. character $\chi_{1332}(307,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $228$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1332 = 2^{2} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1332.bj (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 148 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(228\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1332, [\chi])\).

Total New Old
Modular forms 20 8 12
Cusp forms 4 4 0
Eisenstein series 16 4 12

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q + 2 q^{4} + 4 q^{10} - 2 q^{16} - 2 q^{34} + 2 q^{37} + 2 q^{40} - 2 q^{49} + 2 q^{58} - 6 q^{61} - 4 q^{64} + 8 q^{73} - 4 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1332, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1332.1.bj.a 1332.bj 148.j $4$ $0.665$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-1}) \) None 1332.1.bj.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{12}^{5}q^{2}-\zeta_{12}^{4}q^{4}-\zeta_{12}q^{5}+\zeta_{12}^{3}q^{8}+\cdots\)