Defining parameters
Level: | \( N \) | \(=\) | \( 1332 = 2^{2} \cdot 3^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1332.cs (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 444 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Sturm bound: | \(456\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1332, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1416 | 456 | 960 |
Cusp forms | 1320 | 456 | 864 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1332, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1332, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1332, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(444, [\chi])\)\(^{\oplus 2}\)