Properties

Label 1344.3.m
Level $1344$
Weight $3$
Character orbit 1344.m
Rep. character $\chi_{1344}(127,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $6$
Sturm bound $768$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1344.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(768\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1344, [\chi])\).

Total New Old
Modular forms 536 48 488
Cusp forms 488 48 440
Eisenstein series 48 0 48

Trace form

\( 48 q - 144 q^{9} + O(q^{10}) \) \( 48 q - 144 q^{9} + 32 q^{17} + 144 q^{25} - 32 q^{29} + 96 q^{37} + 160 q^{41} - 336 q^{49} - 160 q^{53} - 64 q^{61} - 256 q^{65} + 192 q^{69} + 96 q^{73} + 224 q^{77} + 432 q^{81} - 320 q^{85} - 160 q^{89} + 288 q^{97} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(1344, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1344.3.m.a 1344.m 4.b $4$ $36.621$ \(\Q(\sqrt{-3}, \sqrt{-7})\) None 336.3.m.c \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+(-1+\beta _{1})q^{5}-\beta _{3}q^{7}-3q^{9}+\cdots\)
1344.3.m.b 1344.m 4.b $4$ $36.621$ \(\Q(\sqrt{-3}, \sqrt{-7})\) None 336.3.m.b \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+2q^{5}-\beta _{3}q^{7}-3q^{9}+(-4\beta _{2}+\cdots)q^{11}+\cdots\)
1344.3.m.c 1344.m 4.b $4$ $36.621$ \(\Q(\sqrt{-3}, \sqrt{-7})\) None 336.3.m.a \(0\) \(0\) \(20\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+(5-\beta _{1})q^{5}-\beta _{3}q^{7}-3q^{9}+\cdots\)
1344.3.m.d 1344.m 4.b $8$ $36.621$ 8.0.49787136.1 None 672.3.m.a \(0\) \(0\) \(-16\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}+(-2+\beta _{4})q^{5}+\beta _{6}q^{7}-3q^{9}+\cdots\)
1344.3.m.e 1344.m 4.b $12$ $36.621$ 12.0.\(\cdots\).1 None 84.3.g.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}+(-1-\beta _{8})q^{5}+\beta _{1}q^{7}-3q^{9}+\cdots\)
1344.3.m.f 1344.m 4.b $16$ $36.621$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 672.3.m.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}-\beta _{3}q^{5}+\beta _{4}q^{7}-3q^{9}+(\beta _{2}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(1344, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1344, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(336, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 2}\)