Properties

Label 135.1
Level 135
Weight 1
Dimension 2
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 1296
Trace bound 0

Downloads

Learn more

Defining parameters

Level: N N = 135=335 135 = 3^{3} \cdot 5
Weight: k k = 1 1
Nonzero newspaces: 1 1
Newform subspaces: 2 2
Sturm bound: 12961296
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M1(Γ1(135))M_{1}(\Gamma_1(135)).

Total New Old
Modular forms 122 50 72
Cusp forms 2 2 0
Eisenstein series 120 48 72

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 2 0 0 0

Trace form

2q2q102q162q19+2q252q31+2q34+2q40+2q46+2q492q61+2q642q792q854q94+O(q100) 2 q - 2 q^{10} - 2 q^{16} - 2 q^{19} + 2 q^{25} - 2 q^{31} + 2 q^{34} + 2 q^{40} + 2 q^{46} + 2 q^{49} - 2 q^{61} + 2 q^{64} - 2 q^{79} - 2 q^{85} - 4 q^{94}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(Γ1(135))S_{1}^{\mathrm{new}}(\Gamma_1(135))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
135.1.c χ135(26,)\chi_{135}(26, \cdot) None 0 1
135.1.d χ135(134,)\chi_{135}(134, \cdot) 135.1.d.a 1 1
135.1.d.b 1
135.1.g χ135(28,)\chi_{135}(28, \cdot) None 0 2
135.1.h χ135(44,)\chi_{135}(44, \cdot) None 0 2
135.1.i χ135(71,)\chi_{135}(71, \cdot) None 0 2
135.1.l χ135(37,)\chi_{135}(37, \cdot) None 0 4
135.1.n χ135(14,)\chi_{135}(14, \cdot) None 0 6
135.1.o χ135(11,)\chi_{135}(11, \cdot) None 0 6
135.1.r χ135(7,)\chi_{135}(7, \cdot) None 0 12