Properties

Label 135.1
Level 135
Weight 1
Dimension 2
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 1296
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(1296\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(135))\).

Total New Old
Modular forms 122 50 72
Cusp forms 2 2 0
Eisenstein series 120 48 72

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q + O(q^{10}) \) \( 2 q - 2 q^{10} - 2 q^{16} - 2 q^{19} + 2 q^{25} - 2 q^{31} + 2 q^{34} + 2 q^{40} + 2 q^{46} + 2 q^{49} - 2 q^{61} + 2 q^{64} - 2 q^{79} - 2 q^{85} - 4 q^{94} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(135))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
135.1.c \(\chi_{135}(26, \cdot)\) None 0 1
135.1.d \(\chi_{135}(134, \cdot)\) 135.1.d.a 1 1
135.1.d.b 1
135.1.g \(\chi_{135}(28, \cdot)\) None 0 2
135.1.h \(\chi_{135}(44, \cdot)\) None 0 2
135.1.i \(\chi_{135}(71, \cdot)\) None 0 2
135.1.l \(\chi_{135}(37, \cdot)\) None 0 4
135.1.n \(\chi_{135}(14, \cdot)\) None 0 6
135.1.o \(\chi_{135}(11, \cdot)\) None 0 6
135.1.r \(\chi_{135}(7, \cdot)\) None 0 12