Properties

Label 135.2
Level 135
Weight 2
Dimension 422
Nonzero newspaces 9
Newform subspaces 16
Sturm bound 2592
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 9 \)
Newform subspaces: \( 16 \)
Sturm bound: \(2592\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(135))\).

Total New Old
Modular forms 768 518 250
Cusp forms 529 422 107
Eisenstein series 239 96 143

Trace form

\( 422 q - 4 q^{2} - 12 q^{3} - 12 q^{4} - 13 q^{5} - 48 q^{6} - 14 q^{7} - 36 q^{8} - 24 q^{9} - 33 q^{10} - 46 q^{11} - 48 q^{12} - 34 q^{13} - 66 q^{14} - 33 q^{15} - 80 q^{16} - 46 q^{17} - 42 q^{18} - 16 q^{19}+ \cdots + 150 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(135))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
135.2.a \(\chi_{135}(1, \cdot)\) 135.2.a.a 1 1
135.2.a.b 1
135.2.a.c 2
135.2.a.d 2
135.2.b \(\chi_{135}(109, \cdot)\) 135.2.b.a 4 1
135.2.b.b 4
135.2.e \(\chi_{135}(46, \cdot)\) 135.2.e.a 2 2
135.2.e.b 6
135.2.f \(\chi_{135}(53, \cdot)\) 135.2.f.a 8 2
135.2.f.b 8
135.2.j \(\chi_{135}(19, \cdot)\) 135.2.j.a 8 2
135.2.k \(\chi_{135}(16, \cdot)\) 135.2.k.a 30 6
135.2.k.b 42
135.2.m \(\chi_{135}(8, \cdot)\) 135.2.m.a 16 4
135.2.p \(\chi_{135}(4, \cdot)\) 135.2.p.a 96 6
135.2.q \(\chi_{135}(2, \cdot)\) 135.2.q.a 192 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(135))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(135)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 1}\)