Defining parameters
Level: | \( N \) | \(=\) | \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1350.q (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(540\) | ||
Trace bound: | \(31\) | ||
Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1350, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1224 | 72 | 1152 |
Cusp forms | 936 | 72 | 864 |
Eisenstein series | 288 | 0 | 288 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1350, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1350, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1350, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 2}\)