Properties

Label 1350.2.q
Level $1350$
Weight $2$
Character orbit 1350.q
Rep. character $\chi_{1350}(143,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $72$
Newform subspaces $8$
Sturm bound $540$
Trace bound $31$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.q (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 8 \)
Sturm bound: \(540\)
Trace bound: \(31\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1350, [\chi])\).

Total New Old
Modular forms 1224 72 1152
Cusp forms 936 72 864
Eisenstein series 288 0 288

Trace form

\( 72 q - 48 q^{11} + 36 q^{16} - 24 q^{23} + 24 q^{37} + 36 q^{38} + 72 q^{41} + 48 q^{46} + 48 q^{47} + 24 q^{56} - 12 q^{58} + 24 q^{61} + 12 q^{67} - 36 q^{68} - 48 q^{77} + 48 q^{82} + 60 q^{83} + 36 q^{86}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1350, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1350.2.q.a 1350.q 45.l $8$ $10.780$ \(\Q(\zeta_{24})\) None 450.2.p.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\zeta_{24}^{3}-\zeta_{24}^{7})q^{2}+(\zeta_{24}^{2}-\zeta_{24}^{6}+\cdots)q^{4}+\cdots\)
1350.2.q.b 1350.q 45.l $8$ $10.780$ \(\Q(\zeta_{24})\) None 450.2.p.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}^{5}q^{2}+(-\zeta_{24}^{2}+\zeta_{24}^{6})q^{4}+\cdots\)
1350.2.q.c 1350.q 45.l $8$ $10.780$ \(\Q(\zeta_{24})\) None 450.2.p.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}q^{2}+\zeta_{24}^{2}q^{4}+\zeta_{24}^{3}q^{8}+(-4+\cdots)q^{11}+\cdots\)
1350.2.q.d 1350.q 45.l $8$ $10.780$ \(\Q(\zeta_{24})\) None 450.2.p.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(-3\zeta_{24}+2\zeta_{24}^{3}+\cdots)q^{7}+\cdots\)
1350.2.q.e 1350.q 45.l $8$ $10.780$ \(\Q(\zeta_{24})\) None 450.2.p.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(\zeta_{24}-\zeta_{24}^{5}+\cdots)q^{8}+\cdots\)
1350.2.q.f 1350.q 45.l $8$ $10.780$ \(\Q(\zeta_{24})\) None 450.2.p.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q-\zeta_{24}^{5}q^{2}+(-\zeta_{24}^{2}+\zeta_{24}^{6})q^{4}+\cdots\)
1350.2.q.g 1350.q 45.l $8$ $10.780$ \(\Q(\zeta_{24})\) None 90.2.l.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(2\zeta_{24}^{2}+2\zeta_{24}^{3}+\cdots)q^{7}+\cdots\)
1350.2.q.h 1350.q 45.l $16$ $10.780$ 16.0.\(\cdots\).9 None 90.2.l.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{12}]$ \(q-\beta _{7}q^{2}-\beta _{9}q^{4}+(-1-2\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1350, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1350, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 2}\)