Properties

Label 1350.2.q
Level 13501350
Weight 22
Character orbit 1350.q
Rep. character χ1350(143,)\chi_{1350}(143,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 7272
Newform subspaces 88
Sturm bound 540540
Trace bound 3131

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1350=23352 1350 = 2 \cdot 3^{3} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1350.q (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 45 45
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 8 8
Sturm bound: 540540
Trace bound: 3131
Distinguishing TpT_p: 77, 1111

Dimensions

The following table gives the dimensions of various subspaces of M2(1350,[χ])M_{2}(1350, [\chi]).

Total New Old
Modular forms 1224 72 1152
Cusp forms 936 72 864
Eisenstein series 288 0 288

Trace form

72q48q11+36q1624q23+24q37+36q38+72q41+48q46+48q47+24q5612q58+24q61+12q6736q6848q77+48q82+60q83+36q86++36q97+O(q100) 72 q - 48 q^{11} + 36 q^{16} - 24 q^{23} + 24 q^{37} + 36 q^{38} + 72 q^{41} + 48 q^{46} + 48 q^{47} + 24 q^{56} - 12 q^{58} + 24 q^{61} + 12 q^{67} - 36 q^{68} - 48 q^{77} + 48 q^{82} + 60 q^{83} + 36 q^{86}+ \cdots + 36 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1350,[χ])S_{2}^{\mathrm{new}}(1350, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1350.2.q.a 1350.q 45.l 88 10.78010.780 Q(ζ24)\Q(\zeta_{24}) None 450.2.p.c 00 00 00 00 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+(ζ243ζ247)q2+(ζ242ζ246+)q4+q+(\zeta_{24}^{3}-\zeta_{24}^{7})q^{2}+(\zeta_{24}^{2}-\zeta_{24}^{6}+\cdots)q^{4}+\cdots
1350.2.q.b 1350.q 45.l 88 10.78010.780 Q(ζ24)\Q(\zeta_{24}) None 450.2.p.d 00 00 00 00 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+ζ245q2+(ζ242+ζ246)q4+q+\zeta_{24}^{5}q^{2}+(-\zeta_{24}^{2}+\zeta_{24}^{6})q^{4}+\cdots
1350.2.q.c 1350.q 45.l 88 10.78010.780 Q(ζ24)\Q(\zeta_{24}) None 450.2.p.g 00 00 00 00 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+ζ24q2+ζ242q4+ζ243q8+(4+)q11+q+\zeta_{24}q^{2}+\zeta_{24}^{2}q^{4}+\zeta_{24}^{3}q^{8}+(-4+\cdots)q^{11}+\cdots
1350.2.q.d 1350.q 45.l 88 10.78010.780 Q(ζ24)\Q(\zeta_{24}) None 450.2.p.c 00 00 00 00 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+ζ247q2ζ242q4+(3ζ24+2ζ243+)q7+q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(-3\zeta_{24}+2\zeta_{24}^{3}+\cdots)q^{7}+\cdots
1350.2.q.e 1350.q 45.l 88 10.78010.780 Q(ζ24)\Q(\zeta_{24}) None 450.2.p.b 00 00 00 00 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+ζ247q2ζ242q4+(ζ24ζ245+)q8+q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(\zeta_{24}-\zeta_{24}^{5}+\cdots)q^{8}+\cdots
1350.2.q.f 1350.q 45.l 88 10.78010.780 Q(ζ24)\Q(\zeta_{24}) None 450.2.p.f 00 00 00 00 SU(2)[C12]\mathrm{SU}(2)[C_{12}] qζ245q2+(ζ242+ζ246)q4+q-\zeta_{24}^{5}q^{2}+(-\zeta_{24}^{2}+\zeta_{24}^{6})q^{4}+\cdots
1350.2.q.g 1350.q 45.l 88 10.78010.780 Q(ζ24)\Q(\zeta_{24}) None 90.2.l.a 00 00 00 88 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+ζ247q2ζ242q4+(2ζ242+2ζ243+)q7+q+\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(2\zeta_{24}^{2}+2\zeta_{24}^{3}+\cdots)q^{7}+\cdots
1350.2.q.h 1350.q 45.l 1616 10.78010.780 16.0.\cdots.9 None 90.2.l.b 00 00 00 8-8 SU(2)[C12]\mathrm{SU}(2)[C_{12}] qβ7q2β9q4+(12β1+β2+)q7+q-\beta _{7}q^{2}-\beta _{9}q^{4}+(-1-2\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots

Decomposition of S2old(1350,[χ])S_{2}^{\mathrm{old}}(1350, [\chi]) into lower level spaces