Defining parameters
Level: | \( N \) | \(=\) | \( 136 = 2^{3} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 136.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(136))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 4 | 18 |
Cusp forms | 15 | 4 | 11 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(17\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(136))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 17 | |||||||
136.2.a.a | $1$ | $1.086$ | \(\Q\) | None | \(0\) | \(-2\) | \(-2\) | \(-2\) | $-$ | $-$ | \(q-2q^{3}-2q^{5}-2q^{7}+q^{9}-6q^{11}+\cdots\) | |
136.2.a.b | $1$ | $1.086$ | \(\Q\) | None | \(0\) | \(2\) | \(0\) | \(0\) | $-$ | $+$ | \(q+2q^{3}+q^{9}+2q^{11}-6q^{13}-q^{17}+\cdots\) | |
136.2.a.c | $2$ | $1.086$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(4\) | \(2\) | $+$ | $-$ | \(q+(-1-\beta )q^{3}+2q^{5}+(1+\beta )q^{7}+(3+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(136))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(136)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 2}\)