Properties

Label 136.4.a
Level $136$
Weight $4$
Character orbit 136.a
Rep. character $\chi_{136}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $4$
Sturm bound $72$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 136.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(72\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(136))\).

Total New Old
Modular forms 58 12 46
Cusp forms 50 12 38
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(4\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(7\)
Minus space\(-\)\(5\)

Trace form

\( 12 q + 6 q^{3} - 10 q^{5} - 48 q^{7} + 136 q^{9} + 38 q^{11} + 36 q^{13} - 16 q^{15} - 34 q^{17} - 112 q^{19} + 296 q^{21} + 28 q^{23} + 552 q^{25} - 228 q^{27} - 258 q^{29} + 536 q^{31} - 116 q^{33} + 136 q^{35}+ \cdots + 542 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(136))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 17
136.4.a.a 136.a 1.a $2$ $8.024$ \(\Q(\sqrt{3}) \) None 136.4.a.a \(0\) \(4\) \(-12\) \(-36\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{3}+(-6-2\beta )q^{5}+(-18+\cdots)q^{7}+\cdots\)
136.4.a.b 136.a 1.a $3$ $8.024$ 3.3.8396.1 None 136.4.a.b \(0\) \(-4\) \(-8\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{2})q^{3}+(-3+\beta _{1}-2\beta _{2})q^{5}+\cdots\)
136.4.a.c 136.a 1.a $3$ $8.024$ 3.3.1556.1 None 136.4.a.c \(0\) \(8\) \(2\) \(12\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(3-\beta _{2})q^{3}+(1-\beta _{1})q^{5}+(4-\beta _{1}+\cdots)q^{7}+\cdots\)
136.4.a.d 136.a 1.a $4$ $8.024$ 4.4.550476.1 None 136.4.a.d \(0\) \(-2\) \(8\) \(-22\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(1-\beta _{1}-\beta _{2}-2\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(136))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(136)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 2}\)