Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M4(Γ0(136)).
|
Total |
New |
Old |
Modular forms
| 58 |
12 |
46 |
Cusp forms
| 50 |
12 |
38 |
Eisenstein series
| 8 |
0 |
8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 17 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 16 | 4 | 12 | | 14 | 4 | 10 | | 2 | 0 | 2 |
+ | − | − | | 14 | 2 | 12 | | 12 | 2 | 10 | | 2 | 0 | 2 |
− | + | − | | 13 | 3 | 10 | | 11 | 3 | 8 | | 2 | 0 | 2 |
− | − | + | | 15 | 3 | 12 | | 13 | 3 | 10 | | 2 | 0 | 2 |
Plus space | + | | 31 | 7 | 24 | | 27 | 7 | 20 | | 4 | 0 | 4 |
Minus space | − | | 27 | 5 | 22 | | 23 | 5 | 18 | | 4 | 0 | 4 |
Decomposition of S4new(Γ0(136)) into newform subspaces
Decomposition of S4old(Γ0(136)) into lower level spaces