Properties

Label 136.4.a
Level 136136
Weight 44
Character orbit 136.a
Rep. character χ136(1,)\chi_{136}(1,\cdot)
Character field Q\Q
Dimension 1212
Newform subspaces 44
Sturm bound 7272
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 136=2317 136 = 2^{3} \cdot 17
Weight: k k == 4 4
Character orbit: [χ][\chi] == 136.a (trivial)
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 7272
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(136))M_{4}(\Gamma_0(136)).

Total New Old
Modular forms 58 12 46
Cusp forms 50 12 38
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

221717FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++16164412121414441010220022
++--14142212121212221010220022
-++-131333101011113388220022
--++15153312121313331010220022
Plus space++31317724242727772020440044
Minus space-27275522222323551818440044

Trace form

12q+6q310q548q7+136q9+38q11+36q1316q1534q17112q19+296q21+28q23+552q25228q27258q29+536q31116q33+136q35++542q99+O(q100) 12 q + 6 q^{3} - 10 q^{5} - 48 q^{7} + 136 q^{9} + 38 q^{11} + 36 q^{13} - 16 q^{15} - 34 q^{17} - 112 q^{19} + 296 q^{21} + 28 q^{23} + 552 q^{25} - 228 q^{27} - 258 q^{29} + 536 q^{31} - 116 q^{33} + 136 q^{35}+ \cdots + 542 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(136))S_{4}^{\mathrm{new}}(\Gamma_0(136)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 17
136.4.a.a 136.a 1.a 22 8.0248.024 Q(3)\Q(\sqrt{3}) None 136.4.a.a 00 44 12-12 36-36 ++ - SU(2)\mathrm{SU}(2) q+(2+β)q3+(62β)q5+(18+)q7+q+(2+\beta )q^{3}+(-6-2\beta )q^{5}+(-18+\cdots)q^{7}+\cdots
136.4.a.b 136.a 1.a 33 8.0248.024 3.3.8396.1 None 136.4.a.b 00 4-4 8-8 2-2 - ++ SU(2)\mathrm{SU}(2) q+(1+β2)q3+(3+β12β2)q5+q+(-1+\beta _{2})q^{3}+(-3+\beta _{1}-2\beta _{2})q^{5}+\cdots
136.4.a.c 136.a 1.a 33 8.0248.024 3.3.1556.1 None 136.4.a.c 00 88 22 1212 - - SU(2)\mathrm{SU}(2) q+(3β2)q3+(1β1)q5+(4β1+)q7+q+(3-\beta _{2})q^{3}+(1-\beta _{1})q^{5}+(4-\beta _{1}+\cdots)q^{7}+\cdots
136.4.a.d 136.a 1.a 44 8.0248.024 4.4.550476.1 None 136.4.a.d 00 2-2 88 22-22 ++ ++ SU(2)\mathrm{SU}(2) qβ1q3+(1β1β22β3)q5+q-\beta _{1}q^{3}+(1-\beta _{1}-\beta _{2}-2\beta _{3})q^{5}+\cdots

Decomposition of S4old(Γ0(136))S_{4}^{\mathrm{old}}(\Gamma_0(136)) into lower level spaces

S4old(Γ0(136)) S_{4}^{\mathrm{old}}(\Gamma_0(136)) \simeq S4new(Γ0(8))S_{4}^{\mathrm{new}}(\Gamma_0(8))2^{\oplus 2}\oplusS4new(Γ0(17))S_{4}^{\mathrm{new}}(\Gamma_0(17))4^{\oplus 4}\oplusS4new(Γ0(34))S_{4}^{\mathrm{new}}(\Gamma_0(34))3^{\oplus 3}\oplusS4new(Γ0(68))S_{4}^{\mathrm{new}}(\Gamma_0(68))2^{\oplus 2}