Defining parameters
Level: | \( N \) | \(=\) | \( 136 = 2^{3} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 136.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(136))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 58 | 12 | 46 |
Cusp forms | 50 | 12 | 38 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(17\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(7\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(136))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 17 | |||||||
136.4.a.a | $2$ | $8.024$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(4\) | \(-12\) | \(-36\) | $+$ | $-$ | \(q+(2+\beta )q^{3}+(-6-2\beta )q^{5}+(-18+\cdots)q^{7}+\cdots\) | |
136.4.a.b | $3$ | $8.024$ | 3.3.8396.1 | None | \(0\) | \(-4\) | \(-8\) | \(-2\) | $-$ | $+$ | \(q+(-1+\beta _{2})q^{3}+(-3+\beta _{1}-2\beta _{2})q^{5}+\cdots\) | |
136.4.a.c | $3$ | $8.024$ | 3.3.1556.1 | None | \(0\) | \(8\) | \(2\) | \(12\) | $-$ | $-$ | \(q+(3-\beta _{2})q^{3}+(1-\beta _{1})q^{5}+(4-\beta _{1}+\cdots)q^{7}+\cdots\) | |
136.4.a.d | $4$ | $8.024$ | 4.4.550476.1 | None | \(0\) | \(-2\) | \(8\) | \(-22\) | $+$ | $+$ | \(q-\beta _{1}q^{3}+(1-\beta _{1}-\beta _{2}-2\beta _{3})q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(136))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(136)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 2}\)