Properties

Label 136.4.n
Level $136$
Weight $4$
Character orbit 136.n
Rep. character $\chi_{136}(9,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $52$
Newform subspaces $2$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 136.n (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(136, [\chi])\).

Total New Old
Modular forms 232 52 180
Cusp forms 200 52 148
Eisenstein series 32 0 32

Trace form

\( 52 q + 60 q^{9} + 100 q^{11} - 8 q^{17} - 456 q^{25} - 660 q^{27} - 296 q^{29} + 432 q^{31} + 1024 q^{33} + 2176 q^{35} + 768 q^{37} + 48 q^{39} - 584 q^{41} - 1308 q^{43} - 720 q^{45} + 760 q^{49} + 192 q^{53}+ \cdots - 1416 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(136, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
136.4.n.a 136.n 17.d $24$ $8.024$ None 136.4.n.a \(0\) \(0\) \(-28\) \(0\) $\mathrm{SU}(2)[C_{8}]$
136.4.n.b 136.n 17.d $28$ $8.024$ None 136.4.n.b \(0\) \(0\) \(28\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{4}^{\mathrm{old}}(136, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(136, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 2}\)