Defining parameters
Level: | \( N \) | \(=\) | \( 136 = 2^{3} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 136.n (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(136, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 232 | 52 | 180 |
Cusp forms | 200 | 52 | 148 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(136, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
136.4.n.a | $24$ | $8.024$ | None | \(0\) | \(0\) | \(-28\) | \(0\) | ||
136.4.n.b | $28$ | $8.024$ | None | \(0\) | \(0\) | \(28\) | \(0\) |
Decomposition of \(S_{4}^{\mathrm{old}}(136, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(136, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 2}\)