Properties

Label 1360.2.a
Level $1360$
Weight $2$
Character orbit 1360.a
Rep. character $\chi_{1360}(1,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $19$
Sturm bound $432$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 19 \)
Sturm bound: \(432\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1360))\).

Total New Old
Modular forms 228 32 196
Cusp forms 205 32 173
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(5\)
\(+\)\(+\)\(-\)\(-\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(5\)
\(+\)\(-\)\(-\)\(+\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(6\)
Plus space\(+\)\(14\)
Minus space\(-\)\(18\)

Trace form

\( 32 q - 4 q^{3} - 4 q^{7} + 32 q^{9} + 8 q^{11} - 8 q^{19} + 8 q^{21} + 20 q^{23} + 32 q^{25} + 8 q^{27} - 8 q^{29} - 32 q^{31} - 16 q^{37} + 16 q^{39} + 8 q^{41} - 24 q^{43} + 8 q^{45} + 24 q^{49} - 16 q^{53}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1360))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 17
1360.2.a.a 1360.a 1.a $1$ $10.860$ \(\Q\) None 170.2.a.d \(0\) \(-3\) \(-1\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-q^{5}-2q^{7}+6q^{9}+4q^{11}+\cdots\)
1360.2.a.b 1360.a 1.a $1$ $10.860$ \(\Q\) None 85.2.a.a \(0\) \(-2\) \(-1\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}+2q^{7}+q^{9}-2q^{11}+\cdots\)
1360.2.a.c 1360.a 1.a $1$ $10.860$ \(\Q\) None 680.2.a.c \(0\) \(-2\) \(1\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}-2q^{7}+q^{9}+2q^{11}+\cdots\)
1360.2.a.d 1360.a 1.a $1$ $10.860$ \(\Q\) None 170.2.a.e \(0\) \(-1\) \(-1\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-2q^{7}-2q^{9}-q^{13}+q^{15}+\cdots\)
1360.2.a.e 1360.a 1.a $1$ $10.860$ \(\Q\) None 170.2.a.c \(0\) \(-1\) \(1\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-2q^{7}-2q^{9}+5q^{13}+\cdots\)
1360.2.a.f 1360.a 1.a $1$ $10.860$ \(\Q\) None 680.2.a.b \(0\) \(0\) \(-1\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-3q^{9}-2q^{13}+q^{17}+4q^{19}+\cdots\)
1360.2.a.g 1360.a 1.a $1$ $10.860$ \(\Q\) None 340.2.a.a \(0\) \(0\) \(-1\) \(4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+4q^{7}-3q^{9}-2q^{11}-6q^{13}+\cdots\)
1360.2.a.h 1360.a 1.a $1$ $10.860$ \(\Q\) None 680.2.a.a \(0\) \(1\) \(1\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-2q^{7}-2q^{9}-4q^{11}+\cdots\)
1360.2.a.i 1360.a 1.a $1$ $10.860$ \(\Q\) None 170.2.a.a \(0\) \(2\) \(-1\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{5}-2q^{7}+q^{9}-6q^{11}+\cdots\)
1360.2.a.j 1360.a 1.a $1$ $10.860$ \(\Q\) None 170.2.a.b \(0\) \(2\) \(1\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{5}+2q^{7}+q^{9}+2q^{11}+\cdots\)
1360.2.a.k 1360.a 1.a $2$ $10.860$ \(\Q(\sqrt{3}) \) None 85.2.a.c \(0\) \(-2\) \(2\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{3}+q^{5}+(1-\beta )q^{7}+(1+\cdots)q^{9}+\cdots\)
1360.2.a.l 1360.a 1.a $2$ $10.860$ \(\Q(\sqrt{2}) \) None 680.2.a.e \(0\) \(0\) \(-2\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-q^{5}-\beta q^{7}-q^{9}+(2-3\beta )q^{11}+\cdots\)
1360.2.a.m 1360.a 1.a $2$ $10.860$ \(\Q(\sqrt{17}) \) None 170.2.a.f \(0\) \(1\) \(2\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+q^{5}-2\beta q^{7}+(1+\beta )q^{9}+4q^{11}+\cdots\)
1360.2.a.n 1360.a 1.a $2$ $10.860$ \(\Q(\sqrt{3}) \) None 680.2.a.d \(0\) \(2\) \(2\) \(6\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+q^{5}+(3-\beta )q^{7}+(1+2\beta )q^{9}+\cdots\)
1360.2.a.o 1360.a 1.a $2$ $10.860$ \(\Q(\sqrt{2}) \) None 85.2.a.b \(0\) \(4\) \(-2\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{3}-q^{5}+(2-\beta )q^{7}+(3+4\beta )q^{9}+\cdots\)
1360.2.a.p 1360.a 1.a $3$ $10.860$ 3.3.940.1 None 680.2.a.h \(0\) \(-3\) \(3\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+q^{5}+(-1+\beta _{2})q^{7}+\cdots\)
1360.2.a.q 1360.a 1.a $3$ $10.860$ 3.3.1016.1 None 680.2.a.g \(0\) \(-1\) \(-3\) \(-6\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-q^{5}+(-2-\beta _{2})q^{7}+(1+\beta _{1}+\cdots)q^{9}+\cdots\)
1360.2.a.r 1360.a 1.a $3$ $10.860$ 3.3.229.1 None 680.2.a.f \(0\) \(-1\) \(-3\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}-q^{5}+(-\beta _{1}+\beta _{2})q^{7}+(1+\cdots)q^{9}+\cdots\)
1360.2.a.s 1360.a 1.a $3$ $10.860$ 3.3.404.1 None 340.2.a.b \(0\) \(0\) \(3\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}+q^{5}+\beta _{2}q^{7}+(2-\beta _{1}+\beta _{2})q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1360))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1360)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(272))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(340))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(680))\)\(^{\oplus 2}\)