Properties

Label 1368.1.dk.b.155.1
Level $1368$
Weight $1$
Character 1368.155
Analytic conductor $0.683$
Analytic rank $0$
Dimension $6$
Projective image $D_{18}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,1,Mod(155,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 3, 13]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.155");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1368.dk (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.682720937282\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{18}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{18} - \cdots)\)

Embedding invariants

Embedding label 155.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 1368.155
Dual form 1368.1.dk.b.203.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 + 0.342020i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.766044 - 0.642788i) q^{6} +(-0.500000 + 0.866025i) q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.939693 + 0.342020i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.766044 - 0.642788i) q^{6} +(-0.500000 + 0.866025i) q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.70574 + 0.984808i) q^{11} +(0.939693 + 0.342020i) q^{12} +(0.173648 - 0.984808i) q^{16} +(0.173648 - 0.984808i) q^{18} +(-0.766044 + 0.642788i) q^{19} +(1.26604 - 1.50881i) q^{22} -1.00000 q^{24} +(-0.766044 + 0.642788i) q^{25} -1.00000 q^{27} +(0.173648 + 0.984808i) q^{32} +(-1.70574 - 0.984808i) q^{33} +(0.173648 + 0.984808i) q^{36} +(0.500000 - 0.866025i) q^{38} +(1.43969 + 1.20805i) q^{41} +(0.766044 + 0.642788i) q^{43} +(-0.673648 + 1.85083i) q^{44} +(0.939693 - 0.342020i) q^{48} +1.00000 q^{49} +(0.500000 - 0.866025i) q^{50} +(0.939693 - 0.342020i) q^{54} +(-0.939693 - 0.342020i) q^{57} +(0.266044 - 1.50881i) q^{59} +(-0.500000 - 0.866025i) q^{64} +(1.93969 + 0.342020i) q^{66} +(-0.233956 + 0.642788i) q^{67} +(-0.500000 - 0.866025i) q^{72} +(0.326352 - 0.118782i) q^{73} +(-0.939693 - 0.342020i) q^{75} +(-0.173648 + 0.984808i) q^{76} +(-0.500000 - 0.866025i) q^{81} +(-1.76604 - 0.642788i) q^{82} +1.96962i q^{83} +(-0.939693 - 0.342020i) q^{86} -1.96962i q^{88} +(0.939693 + 0.342020i) q^{89} +(-0.766044 + 0.642788i) q^{96} +(-0.439693 - 1.20805i) q^{97} +(-0.939693 + 0.342020i) q^{98} -1.96962i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{3} - 3 q^{8} - 3 q^{9} + 3 q^{22} - 6 q^{24} - 6 q^{27} + 3 q^{38} + 3 q^{41} - 3 q^{44} + 6 q^{49} + 3 q^{50} - 3 q^{59} - 3 q^{64} + 6 q^{66} - 6 q^{67} - 3 q^{72} + 3 q^{73} - 3 q^{81} - 6 q^{82} + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(685\) \(1009\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(3\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(4\) 0.766044 0.642788i 0.766044 0.642788i
\(5\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(6\) −0.766044 0.642788i −0.766044 0.642788i
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(9\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(10\) 0 0
\(11\) −1.70574 + 0.984808i −1.70574 + 0.984808i −0.766044 + 0.642788i \(0.777778\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(12\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(13\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.173648 0.984808i 0.173648 0.984808i
\(17\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(18\) 0.173648 0.984808i 0.173648 0.984808i
\(19\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(20\) 0 0
\(21\) 0 0
\(22\) 1.26604 1.50881i 1.26604 1.50881i
\(23\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(24\) −1.00000 −1.00000
\(25\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(26\) 0 0
\(27\) −1.00000 −1.00000
\(28\) 0 0
\(29\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(30\) 0 0
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(33\) −1.70574 0.984808i −1.70574 0.984808i
\(34\) 0 0
\(35\) 0 0
\(36\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0.500000 0.866025i 0.500000 0.866025i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(42\) 0 0
\(43\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(44\) −0.673648 + 1.85083i −0.673648 + 1.85083i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(48\) 0.939693 0.342020i 0.939693 0.342020i
\(49\) 1.00000 1.00000
\(50\) 0.500000 0.866025i 0.500000 0.866025i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(54\) 0.939693 0.342020i 0.939693 0.342020i
\(55\) 0 0
\(56\) 0 0
\(57\) −0.939693 0.342020i −0.939693 0.342020i
\(58\) 0 0
\(59\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(60\) 0 0
\(61\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.500000 0.866025i −0.500000 0.866025i
\(65\) 0 0
\(66\) 1.93969 + 0.342020i 1.93969 + 0.342020i
\(67\) −0.233956 + 0.642788i −0.233956 + 0.642788i 0.766044 + 0.642788i \(0.222222\pi\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(72\) −0.500000 0.866025i −0.500000 0.866025i
\(73\) 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) 0 0
\(75\) −0.939693 0.342020i −0.939693 0.342020i
\(76\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.500000 0.866025i
\(82\) −1.76604 0.642788i −1.76604 0.642788i
\(83\) 1.96962i 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.939693 0.342020i −0.939693 0.342020i
\(87\) 0 0
\(88\) 1.96962i 1.96962i
\(89\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(97\) −0.439693 1.20805i −0.439693 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(98\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(99\) 1.96962i 1.96962i
\(100\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(101\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(108\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(109\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(114\) 1.00000 1.00000
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(119\) 0 0
\(120\) 0 0
\(121\) 1.43969 2.49362i 1.43969 2.49362i
\(122\) 0 0
\(123\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(128\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(129\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(130\) 0 0
\(131\) 1.26604 + 0.223238i 1.26604 + 0.223238i 0.766044 0.642788i \(-0.222222\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) −1.93969 + 0.342020i −1.93969 + 0.342020i
\(133\) 0 0
\(134\) 0.684040i 0.684040i
\(135\) 0 0
\(136\) 0 0
\(137\) −0.233956 + 0.642788i −0.233956 + 0.642788i 0.766044 + 0.642788i \(0.222222\pi\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(145\) 0 0
\(146\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(147\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(148\) 0 0
\(149\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(150\) 1.00000 1.00000
\(151\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) −0.173648 0.984808i −0.173648 0.984808i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(163\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(164\) 1.87939 1.87939
\(165\) 0 0
\(166\) −0.673648 1.85083i −0.673648 1.85083i
\(167\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(168\) 0 0
\(169\) 0.939693 0.342020i 0.939693 0.342020i
\(170\) 0 0
\(171\) −0.173648 0.984808i −0.173648 0.984808i
\(172\) 1.00000 1.00000
\(173\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(177\) 1.43969 0.524005i 1.43969 0.524005i
\(178\) −1.00000 −1.00000
\(179\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(180\) 0 0
\(181\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0.500000 0.866025i 0.500000 0.866025i
\(193\) −1.11334 + 1.32683i −1.11334 + 1.32683i −0.173648 + 0.984808i \(0.555556\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(194\) 0.826352 + 0.984808i 0.826352 + 0.984808i
\(195\) 0 0
\(196\) 0.766044 0.642788i 0.766044 0.642788i
\(197\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(198\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(199\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(200\) −0.173648 0.984808i −0.173648 0.984808i
\(201\) −0.673648 + 0.118782i −0.673648 + 0.118782i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.673648 1.85083i 0.673648 1.85083i
\(210\) 0 0
\(211\) 1.70574 + 0.300767i 1.70574 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.53209 + 1.28558i 1.53209 + 1.28558i
\(215\) 0 0
\(216\) 0.500000 0.866025i 0.500000 0.866025i
\(217\) 0 0
\(218\) 0 0
\(219\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(224\) 0 0
\(225\) −0.173648 0.984808i −0.173648 0.984808i
\(226\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(227\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(228\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.93969 + 0.342020i 1.93969 + 0.342020i 1.00000 \(0\)
0.939693 + 0.342020i \(0.111111\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.766044 1.32683i −0.766044 1.32683i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −1.26604 1.50881i −1.26604 1.50881i −0.766044 0.642788i \(-0.777778\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(242\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(243\) 0.500000 0.866025i 0.500000 0.866025i
\(244\) 0 0
\(245\) 0 0
\(246\) −0.326352 1.85083i −0.326352 1.85083i
\(247\) 0 0
\(248\) 0 0
\(249\) −1.70574 + 0.984808i −1.70574 + 0.984808i
\(250\) 0 0
\(251\) 1.93969 0.342020i 1.93969 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
1.00000 \(0\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.939693 0.342020i −0.939693 0.342020i
\(257\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) −0.173648 0.984808i −0.173648 0.984808i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −1.26604 + 0.223238i −1.26604 + 0.223238i
\(263\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(264\) 1.70574 0.984808i 1.70574 0.984808i
\(265\) 0 0
\(266\) 0 0
\(267\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(268\) 0.233956 + 0.642788i 0.233956 + 0.642788i
\(269\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(270\) 0 0
\(271\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0.684040i 0.684040i
\(275\) 0.673648 1.85083i 0.673648 1.85083i
\(276\) 0 0
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) −0.766044 1.32683i −0.766044 1.32683i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.43969 + 0.524005i 1.43969 + 0.524005i 0.939693 0.342020i \(-0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(282\) 0 0
\(283\) −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i \(0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.939693 0.342020i −0.939693 0.342020i
\(289\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(290\) 0 0
\(291\) 0.826352 0.984808i 0.826352 0.984808i
\(292\) 0.173648 0.300767i 0.173648 0.300767i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) −0.766044 0.642788i −0.766044 0.642788i
\(295\) 0 0
\(296\) 0 0
\(297\) 1.70574 0.984808i 1.70574 0.984808i
\(298\) 0 0
\(299\) 0 0
\(300\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(305\) 0 0
\(306\) 0 0
\(307\) 0.439693 + 1.20805i 0.439693 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 1.00000 1.73205i 1.00000 1.73205i
\(322\) 0 0
\(323\) 0 0
\(324\) −0.939693 0.342020i −0.939693 0.342020i
\(325\) 0 0
\(326\) 0.266044 1.50881i 0.266044 1.50881i
\(327\) 0 0
\(328\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(329\) 0 0
\(330\) 0 0
\(331\) −0.592396 + 0.342020i −0.592396 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(332\) 1.26604 + 1.50881i 1.26604 + 1.50881i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.233956 + 0.642788i 0.233956 + 0.642788i 1.00000 \(0\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(338\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(339\) 0.939693 1.62760i 0.939693 1.62760i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(343\) 0 0
\(344\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.439693 1.20805i −0.439693 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.26604 1.50881i −1.26604 1.50881i
\(353\) −1.11334 + 0.642788i −1.11334 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(354\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(355\) 0 0
\(356\) 0.939693 0.342020i 0.939693 0.342020i
\(357\) 0 0
\(358\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(359\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(360\) 0 0
\(361\) 0.173648 0.984808i 0.173648 0.984808i
\(362\) 0 0
\(363\) 2.87939 2.87939
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(368\) 0 0
\(369\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.73205i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(384\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(385\) 0 0
\(386\) 0.592396 1.62760i 0.592396 1.62760i
\(387\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(388\) −1.11334 0.642788i −1.11334 0.642788i
\(389\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(393\) 0.439693 + 1.20805i 0.439693 + 1.20805i
\(394\) 0 0
\(395\) 0 0
\(396\) −1.26604 1.50881i −1.26604 1.50881i
\(397\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(401\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i 0.939693 + 0.342020i \(0.111111\pi\)
−1.00000 \(\pi\)
\(402\) 0.592396 0.342020i 0.592396 0.342020i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.439693 + 1.20805i −0.439693 + 1.20805i 0.500000 + 0.866025i \(0.333333\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(410\) 0 0
\(411\) −0.673648 + 0.118782i −0.673648 + 0.118782i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(418\) 1.96962i 1.96962i
\(419\) −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(422\) −1.70574 + 0.300767i −1.70574 + 0.300767i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −1.87939 0.684040i −1.87939 0.684040i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(432\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(433\) 1.70574 0.300767i 1.70574 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −0.326352 0.118782i −0.326352 0.118782i
\(439\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(440\) 0 0
\(441\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(442\) 0 0
\(443\) −0.439693 0.524005i −0.439693 0.524005i 0.500000 0.866025i \(-0.333333\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(450\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(451\) −3.64543 0.642788i −3.64543 0.642788i
\(452\) −1.76604 0.642788i −1.76604 0.642788i
\(453\) 0 0
\(454\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(455\) 0 0
\(456\) 0.766044 0.642788i 0.766044 0.642788i
\(457\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(462\) 0 0
\(463\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −1.93969 + 0.342020i −1.93969 + 0.342020i
\(467\) −0.592396 0.342020i −0.592396 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(473\) −1.93969 0.342020i −1.93969 0.342020i
\(474\) 0 0
\(475\) 0.173648 0.984808i 0.173648 0.984808i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.70574 + 0.984808i 1.70574 + 0.984808i
\(483\) 0 0
\(484\) −0.500000 2.83564i −0.500000 2.83564i
\(485\) 0 0
\(486\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(487\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(488\) 0 0
\(489\) −1.53209 −1.53209
\(490\) 0 0
\(491\) −1.11334 + 1.32683i −1.11334 + 1.32683i −0.173648 + 0.984808i \(0.555556\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(492\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 1.26604 1.50881i 1.26604 1.50881i
\(499\) 1.43969 0.524005i 1.43969 0.524005i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.70574 + 0.984808i −1.70574 + 0.984808i
\(503\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(508\) 0 0
\(509\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0.766044 0.642788i 0.766044 0.642788i
\(514\) 0.347296 0.347296
\(515\) 0 0
\(516\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(522\) 0 0
\(523\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(524\) 1.11334 0.642788i 1.11334 0.642788i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −1.26604 + 1.50881i −1.26604 + 1.50881i
\(529\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(530\) 0 0
\(531\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.500000 0.866025i −0.500000 0.866025i
\(535\) 0 0
\(536\) −0.439693 0.524005i −0.439693 0.524005i
\(537\) 0.347296 0.347296
\(538\) 0 0
\(539\) −1.70574 + 0.984808i −1.70574 + 0.984808i
\(540\) 0 0
\(541\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.592396 1.62760i 0.592396 1.62760i −0.173648 0.984808i \(-0.555556\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(548\) 0.233956 + 0.642788i 0.233956 + 0.642788i
\(549\) 0 0
\(550\) 1.96962i 1.96962i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(557\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −1.53209 −1.53209
\(563\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.326352 1.85083i −0.326352 1.85083i
\(567\) 0 0
\(568\) 0 0
\(569\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 1.00000
\(577\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(578\) −0.500000 0.866025i −0.500000 0.866025i
\(579\) −1.70574 0.300767i −1.70574 0.300767i
\(580\) 0 0
\(581\) 0 0
\(582\) −0.439693 + 1.20805i −0.439693 + 1.20805i
\(583\) 0 0
\(584\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(585\) 0 0
\(586\) 0 0
\(587\) −0.592396 1.62760i −0.592396 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(588\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.673648 + 0.118782i −0.673648 + 0.118782i −0.500000 0.866025i \(-0.666667\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(594\) −1.26604 + 1.50881i −1.26604 + 1.50881i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(600\) 0.766044 0.642788i 0.766044 0.642788i
\(601\) 1.28558i 1.28558i −0.766044 0.642788i \(-0.777778\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(602\) 0 0
\(603\) −0.439693 0.524005i −0.439693 0.524005i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) −0.766044 0.642788i −0.766044 0.642788i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(614\) −0.826352 0.984808i −0.826352 0.984808i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.439693 1.20805i 0.439693 1.20805i −0.500000 0.866025i \(-0.666667\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(618\) 0 0
\(619\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.173648 0.984808i 0.173648 0.984808i
\(626\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(627\) 1.93969 0.342020i 1.93969 0.342020i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(632\) 0 0
\(633\) 0.592396 + 1.62760i 0.592396 + 1.62760i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(642\) −0.347296 + 1.96962i −0.347296 + 1.96962i
\(643\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 1.00000 1.00000
\(649\) 1.03209 + 2.83564i 1.03209 + 2.83564i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.43969 1.20805i 1.43969 1.20805i
\(657\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(658\) 0 0
\(659\) 0.766044 0.642788i 0.766044 0.642788i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(660\) 0 0
\(661\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(662\) 0.439693 0.524005i 0.439693 0.524005i
\(663\) 0 0
\(664\) −1.70574 0.984808i −1.70574 0.984808i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(674\) −0.439693 0.524005i −0.439693 0.524005i
\(675\) 0.766044 0.642788i 0.766044 0.642788i
\(676\) 0.500000 0.866025i 0.500000 0.866025i
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(679\) 0 0
\(680\) 0 0
\(681\) 1.53209 1.53209
\(682\) 0 0
\(683\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) −0.766044 0.642788i −0.766044 0.642788i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0.766044 0.642788i 0.766044 0.642788i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.826352 + 0.984808i 0.826352 + 0.984808i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(700\) 0 0
\(701\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.70574 + 0.984808i 1.70574 + 0.984808i
\(705\) 0 0
\(706\) 0.826352 0.984808i 0.826352 0.984808i
\(707\) 0 0
\(708\) 0.766044 1.32683i 0.766044 1.32683i
\(709\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −0.0603074 0.342020i −0.0603074 0.342020i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(723\) 0.673648 1.85083i 0.673648 1.85083i
\(724\) 0 0
\(725\) 0 0
\(726\) −2.70574 + 0.984808i −2.70574 + 0.984808i
\(727\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.233956 1.32683i −0.233956 1.32683i
\(738\) 1.43969 1.20805i 1.43969 1.20805i
\(739\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1.70574 0.984808i −1.70574 0.984808i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(752\) 0 0
\(753\) 1.26604 + 1.50881i 1.26604 + 1.50881i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(758\) 0.592396 + 1.62760i 0.592396 + 1.62760i
\(759\) 0 0
\(760\) 0 0
\(761\) −1.11334 + 0.642788i −1.11334 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −0.173648 0.984808i −0.173648 0.984808i
\(769\) −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(770\) 0 0
\(771\) −0.0603074 0.342020i −0.0603074 0.342020i
\(772\) 1.73205i 1.73205i
\(773\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(774\) 0.766044 0.642788i 0.766044 0.642788i
\(775\) 0 0
\(776\) 1.26604 + 0.223238i 1.26604 + 0.223238i
\(777\) 0 0
\(778\) 0 0
\(779\) −1.87939 −1.87939
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.173648 0.984808i 0.173648 0.984808i
\(785\) 0 0
\(786\) −0.826352 0.984808i −0.826352 0.984808i
\(787\) 0.684040i 0.684040i 0.939693 + 0.342020i \(0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 1.70574 + 0.984808i 1.70574 + 0.984808i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.766044 0.642788i −0.766044 0.642788i
\(801\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(802\) −0.0603074 0.342020i −0.0603074 0.342020i
\(803\) −0.439693 + 0.524005i −0.439693 + 0.524005i
\(804\) −0.439693 + 0.524005i −0.439693 + 0.524005i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.11334 + 0.642788i 1.11334 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(810\) 0 0
\(811\) 0.592396 1.62760i 0.592396 1.62760i −0.173648 0.984808i \(-0.555556\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.00000 −1.00000
\(818\) 1.28558i 1.28558i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(822\) 0.592396 0.342020i 0.592396 0.342020i
\(823\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(824\) 0 0
\(825\) 1.93969 0.342020i 1.93969 0.342020i
\(826\) 0 0
\(827\) 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(828\) 0 0
\(829\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0.766044 1.32683i 0.766044 1.32683i
\(835\) 0 0
\(836\) −0.673648 1.85083i −0.673648 1.85083i
\(837\) 0 0
\(838\) 1.11334 1.32683i 1.11334 1.32683i
\(839\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(840\) 0 0
\(841\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(842\) 0 0
\(843\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(844\) 1.50000 0.866025i 1.50000 0.866025i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.00000 2.00000
\(857\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) −0.266044 + 0.223238i −0.266044 + 0.223238i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) −0.173648 0.984808i −0.173648 0.984808i
\(865\) 0 0
\(866\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(867\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1.26604 + 0.223238i 1.26604 + 0.223238i
\(874\) 0 0
\(875\) 0 0
\(876\) 0.347296 0.347296
\(877\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.70574 + 0.984808i −1.70574 + 0.984808i −0.766044 + 0.642788i \(0.777778\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(882\) 0.173648 0.984808i 0.173648 0.984808i
\(883\) 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.592396 + 0.342020i 0.592396 + 0.342020i
\(887\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.70574 + 0.984808i 1.70574 + 0.984808i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −1.43969 1.20805i −1.43969 1.20805i
\(899\) 0 0
\(900\) −0.766044 0.642788i −0.766044 0.642788i
\(901\) 0 0
\(902\) 3.64543 0.642788i 3.64543 0.642788i
\(903\) 0 0
\(904\) 1.87939 1.87939
\(905\) 0 0
\(906\) 0 0
\(907\) 0.826352 0.984808i 0.826352 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
1.00000 \(0\)
\(908\) −0.266044 1.50881i −0.266044 1.50881i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(912\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(913\) −1.93969 3.35965i −1.93969 3.35965i
\(914\) 0.266044 1.50881i 0.266044 1.50881i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) −0.826352 + 0.984808i −0.826352 + 0.984808i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.233956 + 0.642788i 0.233956 + 0.642788i 1.00000 \(0\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(930\) 0 0
\(931\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(932\) 1.70574 0.984808i 1.70574 0.984808i
\(933\) 0 0
\(934\) 0.673648 + 0.118782i 0.673648 + 0.118782i
\(935\) 0 0
\(936\) 0 0
\(937\) 1.43969 + 0.524005i 1.43969 + 0.524005i 0.939693 0.342020i \(-0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(938\) 0 0
\(939\) 0.266044 0.223238i 0.266044 0.223238i
\(940\) 0 0
\(941\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −1.43969 0.524005i −1.43969 0.524005i
\(945\) 0 0
\(946\) 1.93969 0.342020i 1.93969 0.342020i
\(947\) 1.70574 + 0.300767i 1.70574 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(951\) 0 0
\(952\) 0 0
\(953\) 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(962\) 0 0
\(963\) 2.00000 2.00000
\(964\) −1.93969 0.342020i −1.93969 0.342020i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(968\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(969\) 0 0
\(970\) 0 0
\(971\) −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
−1.00000 \(\pi\)
\(972\) −0.173648 0.984808i −0.173648 0.984808i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(978\) 1.43969 0.524005i 1.43969 0.524005i
\(979\) −1.93969 + 0.342020i −1.93969 + 0.342020i
\(980\) 0 0
\(981\) 0 0
\(982\) 0.592396 1.62760i 0.592396 1.62760i
\(983\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(984\) −1.43969 1.20805i −1.43969 1.20805i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(992\) 0 0
\(993\) −0.592396 0.342020i −0.592396 0.342020i
\(994\) 0 0
\(995\) 0 0
\(996\) −0.673648 + 1.85083i −0.673648 + 1.85083i
\(997\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(998\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1368.1.dk.b.155.1 6
8.3 odd 2 CM 1368.1.dk.b.155.1 6
9.5 odd 6 1368.1.ee.b.1067.1 yes 6
19.13 odd 18 1368.1.ee.b.659.1 yes 6
72.59 even 6 1368.1.ee.b.1067.1 yes 6
152.51 even 18 1368.1.ee.b.659.1 yes 6
171.32 even 18 inner 1368.1.dk.b.203.1 yes 6
1368.203 odd 18 inner 1368.1.dk.b.203.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1368.1.dk.b.155.1 6 1.1 even 1 trivial
1368.1.dk.b.155.1 6 8.3 odd 2 CM
1368.1.dk.b.203.1 yes 6 171.32 even 18 inner
1368.1.dk.b.203.1 yes 6 1368.203 odd 18 inner
1368.1.ee.b.659.1 yes 6 19.13 odd 18
1368.1.ee.b.659.1 yes 6 152.51 even 18
1368.1.ee.b.1067.1 yes 6 9.5 odd 6
1368.1.ee.b.1067.1 yes 6 72.59 even 6