Defining parameters
Level: | \( N \) | \(=\) | \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1368.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1368, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 248 | 90 | 158 |
Cusp forms | 232 | 90 | 142 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1368, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1368.2.g.a | $2$ | $10.924$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(0\) | \(4\) | \(q+(-i+1)q^{2}-2 i q^{4}+2 q^{7}+(-2 i-2)q^{8}+\cdots\) |
1368.2.g.b | $16$ | $10.924$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q-\beta _{9}q^{2}+\beta _{2}q^{4}+(-\beta _{1}-\beta _{6}+\beta _{8}+\cdots)q^{5}+\cdots\) |
1368.2.g.c | $18$ | $10.924$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-2\) | \(0\) | \(0\) | \(-12\) | \(q-\beta _{14}q^{2}-\beta _{2}q^{4}-\beta _{13}q^{5}+(\beta _{4}-\beta _{6}+\cdots)q^{7}+\cdots\) |
1368.2.g.d | $18$ | $10.924$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-2\) | \(0\) | \(0\) | \(20\) | \(q-\beta _{8}q^{2}-\beta _{2}q^{4}+\beta _{6}q^{5}+(1+\beta _{1}+\cdots)q^{7}+\cdots\) |
1368.2.g.e | $36$ | $10.924$ | None | \(0\) | \(0\) | \(0\) | \(-8\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1368, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 2}\)