Properties

Label 1368.2.g
Level $1368$
Weight $2$
Character orbit 1368.g
Rep. character $\chi_{1368}(685,\cdot)$
Character field $\Q$
Dimension $90$
Newform subspaces $5$
Sturm bound $480$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1368.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(480\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1368, [\chi])\).

Total New Old
Modular forms 248 90 158
Cusp forms 232 90 142
Eisenstein series 16 0 16

Trace form

\( 90 q - 2 q^{2} + 2 q^{4} - 4 q^{7} + 4 q^{8} + O(q^{10}) \) \( 90 q - 2 q^{2} + 2 q^{4} - 4 q^{7} + 4 q^{8} + 8 q^{10} + 20 q^{14} + 2 q^{16} - 4 q^{17} + 8 q^{20} - 20 q^{22} + 20 q^{23} - 86 q^{25} - 10 q^{26} + 2 q^{28} + 8 q^{32} - 12 q^{34} - 28 q^{40} + 4 q^{41} + 4 q^{44} + 4 q^{46} - 20 q^{47} + 90 q^{49} - 10 q^{50} - 48 q^{55} + 16 q^{56} + 2 q^{58} + 48 q^{62} + 38 q^{64} + 16 q^{65} - 6 q^{68} + 40 q^{70} + 24 q^{71} - 20 q^{73} + 56 q^{74} - 8 q^{79} + 4 q^{80} + 24 q^{82} - 36 q^{86} + 48 q^{88} - 36 q^{89} - 14 q^{92} - 88 q^{94} - 16 q^{95} - 20 q^{97} + 34 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1368, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1368.2.g.a 1368.g 8.b $2$ $10.924$ \(\Q(\sqrt{-1}) \) None 152.2.c.a \(2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+1)q^{2}-2 i q^{4}+2 q^{7}+(-2 i-2)q^{8}+\cdots\)
1368.2.g.b 1368.g 8.b $16$ $10.924$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 152.2.c.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{9}q^{2}+\beta _{2}q^{4}+(-\beta _{1}-\beta _{6}+\beta _{8}+\cdots)q^{5}+\cdots\)
1368.2.g.c 1368.g 8.b $18$ $10.924$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 456.2.g.a \(-2\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{14}q^{2}-\beta _{2}q^{4}-\beta _{13}q^{5}+(\beta _{4}-\beta _{6}+\cdots)q^{7}+\cdots\)
1368.2.g.d 1368.g 8.b $18$ $10.924$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 456.2.g.b \(-2\) \(0\) \(0\) \(20\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{8}q^{2}-\beta _{2}q^{4}+\beta _{6}q^{5}+(1+\beta _{1}+\cdots)q^{7}+\cdots\)
1368.2.g.e 1368.g 8.b $36$ $10.924$ None 1368.2.g.e \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1368, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1368, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 2}\)