Properties

Label 1372.4.i
Level 13721372
Weight 44
Character orbit 1372.i
Rep. character χ1372(197,)\chi_{1372}(197,\cdot)
Character field Q(ζ7)\Q(\zeta_{7})
Dimension 420420
Sturm bound 784784

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1372=2273 1372 = 2^{2} \cdot 7^{3}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1372.i (of order 77 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 49 49
Character field: Q(ζ7)\Q(\zeta_{7})
Sturm bound: 784784

Dimensions

The following table gives the dimensions of various subspaces of M4(1372,[χ])M_{4}(1372, [\chi]).

Total New Old
Modular forms 3654 420 3234
Cusp forms 3402 420 2982
Eisenstein series 252 0 252

Trace form

420q6q32q5700q9+42q1194q13126q15+136q17+360q19238q231946q25654q27+182q29+140q31+352q33+2450q37+1610q39+13048q99+O(q100) 420 q - 6 q^{3} - 2 q^{5} - 700 q^{9} + 42 q^{11} - 94 q^{13} - 126 q^{15} + 136 q^{17} + 360 q^{19} - 238 q^{23} - 1946 q^{25} - 654 q^{27} + 182 q^{29} + 140 q^{31} + 352 q^{33} + 2450 q^{37} + 1610 q^{39}+ \cdots - 13048 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(1372,[χ])S_{4}^{\mathrm{new}}(1372, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(1372,[χ])S_{4}^{\mathrm{old}}(1372, [\chi]) into lower level spaces

S4old(1372,[χ]) S_{4}^{\mathrm{old}}(1372, [\chi]) \simeq S4new(49,[χ])S_{4}^{\mathrm{new}}(49, [\chi])6^{\oplus 6}\oplusS4new(98,[χ])S_{4}^{\mathrm{new}}(98, [\chi])4^{\oplus 4}\oplusS4new(196,[χ])S_{4}^{\mathrm{new}}(196, [\chi])2^{\oplus 2}\oplusS4new(343,[χ])S_{4}^{\mathrm{new}}(343, [\chi])3^{\oplus 3}\oplusS4new(686,[χ])S_{4}^{\mathrm{new}}(686, [\chi])2^{\oplus 2}