Properties

Label 138.2
Level 138
Weight 2
Dimension 133
Nonzero newspaces 4
Newform subspaces 10
Sturm bound 2112
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 138 = 2 \cdot 3 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 10 \)
Sturm bound: \(2112\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(138))\).

Total New Old
Modular forms 616 133 483
Cusp forms 441 133 308
Eisenstein series 175 0 175

Trace form

\( 133 q + q^{2} + q^{3} + q^{4} + 6 q^{5} + q^{6} + 8 q^{7} + q^{8} + q^{9} + 6 q^{10} + 12 q^{11} + q^{12} + 14 q^{13} + 8 q^{14} - 16 q^{15} + q^{16} - 26 q^{17} - 43 q^{18} - 24 q^{19} - 38 q^{20}+ \cdots - 98 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(138))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
138.2.a \(\chi_{138}(1, \cdot)\) 138.2.a.a 1 1
138.2.a.b 1
138.2.a.c 1
138.2.a.d 2
138.2.d \(\chi_{138}(137, \cdot)\) 138.2.d.a 8 1
138.2.e \(\chi_{138}(13, \cdot)\) 138.2.e.a 10 10
138.2.e.b 10
138.2.e.c 10
138.2.e.d 10
138.2.f \(\chi_{138}(5, \cdot)\) 138.2.f.a 80 10

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(138))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(138)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)