Properties

Label 138.2
Level 138
Weight 2
Dimension 133
Nonzero newspaces 4
Newform subspaces 10
Sturm bound 2112
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 138=2323 138 = 2 \cdot 3 \cdot 23
Weight: k k = 2 2
Nonzero newspaces: 4 4
Newform subspaces: 10 10
Sturm bound: 21122112
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(138))M_{2}(\Gamma_1(138)).

Total New Old
Modular forms 616 133 483
Cusp forms 441 133 308
Eisenstein series 175 0 175

Trace form

133q+q2+q3+q4+6q5+q6+8q7+q8+q9+6q10+12q11+q12+14q13+8q1416q15+q1626q1743q1824q1938q20+98q99+O(q100) 133 q + q^{2} + q^{3} + q^{4} + 6 q^{5} + q^{6} + 8 q^{7} + q^{8} + q^{9} + 6 q^{10} + 12 q^{11} + q^{12} + 14 q^{13} + 8 q^{14} - 16 q^{15} + q^{16} - 26 q^{17} - 43 q^{18} - 24 q^{19} - 38 q^{20}+ \cdots - 98 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(138))S_{2}^{\mathrm{new}}(\Gamma_1(138))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
138.2.a χ138(1,)\chi_{138}(1, \cdot) 138.2.a.a 1 1
138.2.a.b 1
138.2.a.c 1
138.2.a.d 2
138.2.d χ138(137,)\chi_{138}(137, \cdot) 138.2.d.a 8 1
138.2.e χ138(13,)\chi_{138}(13, \cdot) 138.2.e.a 10 10
138.2.e.b 10
138.2.e.c 10
138.2.e.d 10
138.2.f χ138(5,)\chi_{138}(5, \cdot) 138.2.f.a 80 10

Decomposition of S2old(Γ1(138))S_{2}^{\mathrm{old}}(\Gamma_1(138)) into lower level spaces