Properties

Label 1380.2.s
Level $1380$
Weight $2$
Character orbit 1380.s
Rep. character $\chi_{1380}(967,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $264$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1380.s (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1380, [\chi])\).

Total New Old
Modular forms 592 264 328
Cusp forms 560 264 296
Eisenstein series 32 0 32

Trace form

\( 264 q + 24 q^{8} + 16 q^{10} + 16 q^{12} + 8 q^{13} - 32 q^{16} + 40 q^{17} + 16 q^{22} + 40 q^{25} - 32 q^{26} - 24 q^{28} - 16 q^{30} - 16 q^{33} - 8 q^{37} - 32 q^{38} + 16 q^{40} - 8 q^{45} - 16 q^{52}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1380, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1380, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 2}\)