Properties

Label 1386.2.bf
Level 13861386
Weight 22
Character orbit 1386.bf
Rep. character χ1386(769,)\chi_{1386}(769,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 192192
Sturm bound 576576

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1386=232711 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1386.bf (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 693 693
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 576576

Dimensions

The following table gives the dimensions of various subspaces of M2(1386,[χ])M_{2}(1386, [\chi]).

Total New Old
Modular forms 592 192 400
Cusp forms 560 192 368
Eisenstein series 32 0 32

Trace form

192q+96q416q94q11+8q1596q16+24q23+96q258q3624q428q44128q53+24q588q60192q6412q7048q7134q77++16q99+O(q100) 192 q + 96 q^{4} - 16 q^{9} - 4 q^{11} + 8 q^{15} - 96 q^{16} + 24 q^{23} + 96 q^{25} - 8 q^{36} - 24 q^{42} - 8 q^{44} - 128 q^{53} + 24 q^{58} - 8 q^{60} - 192 q^{64} - 12 q^{70} - 48 q^{71} - 34 q^{77}+ \cdots + 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1386,[χ])S_{2}^{\mathrm{new}}(1386, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1386,[χ])S_{2}^{\mathrm{old}}(1386, [\chi]) into lower level spaces

S2old(1386,[χ]) S_{2}^{\mathrm{old}}(1386, [\chi]) \simeq S2new(693,[χ])S_{2}^{\mathrm{new}}(693, [\chi])2^{\oplus 2}