Properties

Label 1386.2.bs
Level 13861386
Weight 22
Character orbit 1386.bs
Rep. character χ1386(811,)\chi_{1386}(811,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 160160
Sturm bound 576576

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1386=232711 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1386.bs (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 77 77
Character field: Q(ζ10)\Q(\zeta_{10})
Sturm bound: 576576

Dimensions

The following table gives the dimensions of various subspaces of M2(1386,[χ])M_{2}(1386, [\chi]).

Total New Old
Modular forms 1216 160 1056
Cusp forms 1088 160 928
Eisenstein series 128 0 128

Trace form

160q+40q4+10q712q11+2q1440q16+4q22+16q23+12q25+10q2820q29+40q35+40q378q44+24q4916q53+8q5616q58+60q95+O(q100) 160 q + 40 q^{4} + 10 q^{7} - 12 q^{11} + 2 q^{14} - 40 q^{16} + 4 q^{22} + 16 q^{23} + 12 q^{25} + 10 q^{28} - 20 q^{29} + 40 q^{35} + 40 q^{37} - 8 q^{44} + 24 q^{49} - 16 q^{53} + 8 q^{56} - 16 q^{58}+ \cdots - 60 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1386,[χ])S_{2}^{\mathrm{new}}(1386, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1386,[χ])S_{2}^{\mathrm{old}}(1386, [\chi]) into lower level spaces

S2old(1386,[χ]) S_{2}^{\mathrm{old}}(1386, [\chi]) \simeq S2new(77,[χ])S_{2}^{\mathrm{new}}(77, [\chi])6^{\oplus 6}\oplusS2new(154,[χ])S_{2}^{\mathrm{new}}(154, [\chi])3^{\oplus 3}\oplusS2new(231,[χ])S_{2}^{\mathrm{new}}(231, [\chi])4^{\oplus 4}\oplusS2new(462,[χ])S_{2}^{\mathrm{new}}(462, [\chi])2^{\oplus 2}\oplusS2new(693,[χ])S_{2}^{\mathrm{new}}(693, [\chi])2^{\oplus 2}