Properties

Label 1386.2.cf
Level $1386$
Weight $2$
Character orbit 1386.cf
Rep. character $\chi_{1386}(29,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $576$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1386.cf (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 99 \)
Character field: \(\Q(\zeta_{30})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1386, [\chi])\).

Total New Old
Modular forms 2368 576 1792
Cusp forms 2240 576 1664
Eisenstein series 128 0 128

Trace form

\( 576 q + 8 q^{3} + 72 q^{4} + 12 q^{5} - 10 q^{6} + 16 q^{9} + 18 q^{11} - 24 q^{12} + 72 q^{16} + 20 q^{18} - 60 q^{19} - 12 q^{20} - 6 q^{22} + 10 q^{24} - 60 q^{25} + 32 q^{27} + 180 q^{29} + 60 q^{30}+ \cdots + 220 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1386, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1386, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1386, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(198, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(693, [\chi])\)\(^{\oplus 2}\)