Properties

Label 1386.2.p
Level $1386$
Weight $2$
Character orbit 1386.p
Rep. character $\chi_{1386}(65,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $192$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1386.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 693 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1386, [\chi])\).

Total New Old
Modular forms 592 192 400
Cusp forms 560 192 368
Eisenstein series 32 0 32

Trace form

\( 192 q - 96 q^{4} + 8 q^{9} + 8 q^{15} - 96 q^{16} - 192 q^{25} - 24 q^{26} + 12 q^{27} + 26 q^{33} + 8 q^{36} - 24 q^{42} + 12 q^{44} - 8 q^{45} - 24 q^{53} + 12 q^{55} + 24 q^{58} + 60 q^{59} - 16 q^{60}+ \cdots - 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1386, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1386, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1386, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(693, [\chi])\)\(^{\oplus 2}\)