Properties

Label 1395.2.a
Level $1395$
Weight $2$
Character orbit 1395.a
Rep. character $\chi_{1395}(1,\cdot)$
Character field $\Q$
Dimension $50$
Newform subspaces $17$
Sturm bound $384$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1395 = 3^{2} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1395.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(384\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1395))\).

Total New Old
Modular forms 200 50 150
Cusp forms 185 50 135
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(31\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(5\)
\(+\)\(+\)\(-\)\(-\)\(5\)
\(+\)\(-\)\(+\)\(-\)\(5\)
\(+\)\(-\)\(-\)\(+\)\(5\)
\(-\)\(+\)\(+\)\(-\)\(9\)
\(-\)\(+\)\(-\)\(+\)\(5\)
\(-\)\(-\)\(+\)\(+\)\(6\)
\(-\)\(-\)\(-\)\(-\)\(10\)
Plus space\(+\)\(21\)
Minus space\(-\)\(29\)

Trace form

\( 50 q - 2 q^{2} + 46 q^{4} + 2 q^{5} - 4 q^{7} - 6 q^{8} - 2 q^{10} - 4 q^{11} + 16 q^{14} + 38 q^{16} + 8 q^{17} - 20 q^{19} + 6 q^{20} + 4 q^{22} - 12 q^{23} + 50 q^{25} - 8 q^{26} - 8 q^{28} + 8 q^{29}+ \cdots - 50 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1395))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 31
1395.2.a.a 1395.a 1.a $1$ $11.139$ \(\Q\) None 465.2.a.b \(-1\) \(0\) \(-1\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}-q^{5}-2q^{7}+3q^{8}+q^{10}+\cdots\)
1395.2.a.b 1395.a 1.a $1$ $11.139$ \(\Q\) None 155.2.a.c \(0\) \(0\) \(1\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{4}+q^{5}+4q^{11}-6q^{13}+4q^{16}+\cdots\)
1395.2.a.c 1395.a 1.a $1$ $11.139$ \(\Q\) None 465.2.a.a \(1\) \(0\) \(-1\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}-q^{5}-4q^{7}-3q^{8}-q^{10}+\cdots\)
1395.2.a.d 1395.a 1.a $1$ $11.139$ \(\Q\) None 155.2.a.b \(1\) \(0\) \(1\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+q^{5}+4q^{7}-3q^{8}+q^{10}+\cdots\)
1395.2.a.e 1395.a 1.a $1$ $11.139$ \(\Q\) None 155.2.a.a \(2\) \(0\) \(-1\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{4}-q^{5}-2q^{7}-2q^{10}+\cdots\)
1395.2.a.f 1395.a 1.a $2$ $11.139$ \(\Q(\sqrt{3}) \) None 465.2.a.d \(0\) \(0\) \(2\) \(-6\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{4}+q^{5}+(-3+\beta )q^{7}-\beta q^{8}+\cdots\)
1395.2.a.g 1395.a 1.a $2$ $11.139$ \(\Q(\sqrt{2}) \) None 465.2.a.c \(2\) \(0\) \(2\) \(-4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(1+2\beta )q^{4}+q^{5}+(-2+\cdots)q^{7}+\cdots\)
1395.2.a.h 1395.a 1.a $3$ $11.139$ 3.3.148.1 None 465.2.a.g \(-3\) \(0\) \(3\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{2}+(2-\beta _{1}+\beta _{2})q^{4}+\cdots\)
1395.2.a.i 1395.a 1.a $3$ $11.139$ 3.3.148.1 None 465.2.a.f \(-1\) \(0\) \(-3\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{4}-q^{5}+(1-\beta _{1}+\cdots)q^{7}+\cdots\)
1395.2.a.j 1395.a 1.a $3$ $11.139$ 3.3.564.1 None 465.2.a.e \(-1\) \(0\) \(3\) \(8\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{2})q^{4}+q^{5}+(3-\beta _{1}+\cdots)q^{7}+\cdots\)
1395.2.a.k 1395.a 1.a $4$ $11.139$ 4.4.8468.1 None 465.2.a.h \(-2\) \(0\) \(-4\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(2-\beta _{1})q^{4}-q^{5}+(1-\beta _{1}+\cdots)q^{7}+\cdots\)
1395.2.a.l 1395.a 1.a $4$ $11.139$ 4.4.8468.1 None 155.2.a.e \(-1\) \(0\) \(-4\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(1+\beta _{1}-\beta _{2}+\beta _{3})q^{4}-q^{5}+\cdots\)
1395.2.a.m 1395.a 1.a $4$ $11.139$ 4.4.20308.1 None 155.2.a.d \(1\) \(0\) \(4\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{1}+\beta _{2})q^{4}+q^{5}+\beta _{2}q^{7}+\cdots\)
1395.2.a.n 1395.a 1.a $5$ $11.139$ 5.5.223824.1 None 1395.2.a.n \(-3\) \(0\) \(5\) \(-6\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(1-\beta _{1}+\beta _{2})q^{4}+\cdots\)
1395.2.a.o 1395.a 1.a $5$ $11.139$ 5.5.582992.1 None 1395.2.a.o \(-1\) \(0\) \(-5\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}-q^{5}+(\beta _{1}-\beta _{4})q^{7}+\cdots\)
1395.2.a.p 1395.a 1.a $5$ $11.139$ 5.5.582992.1 None 1395.2.a.o \(1\) \(0\) \(5\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+q^{5}+(\beta _{1}-\beta _{4})q^{7}+\cdots\)
1395.2.a.q 1395.a 1.a $5$ $11.139$ 5.5.223824.1 None 1395.2.a.n \(3\) \(0\) \(-5\) \(-6\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-\beta _{1}+\beta _{2})q^{4}-q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1395))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1395)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(155))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(279))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(465))\)\(^{\oplus 2}\)