Defining parameters
Level: | \( N \) | \(=\) | \( 14 = 2 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 14.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(14))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 6 | 18 |
Cusp forms | 20 | 6 | 14 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(4\) | |
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | |||||||
14.12.a.a | $1$ | $10.757$ | \(\Q\) | None | \(-32\) | \(-396\) | \(7350\) | \(16807\) | $+$ | $-$ | \(q-2^{5}q^{2}-396q^{3}+2^{10}q^{4}+7350q^{5}+\cdots\) | |
14.12.a.b | $1$ | $10.757$ | \(\Q\) | None | \(32\) | \(-90\) | \(-7480\) | \(-16807\) | $-$ | $+$ | \(q+2^{5}q^{2}-90q^{3}+2^{10}q^{4}-7480q^{5}+\cdots\) | |
14.12.a.c | $2$ | $10.757$ | \(\Q(\sqrt{153169}) \) | None | \(-64\) | \(350\) | \(266\) | \(-33614\) | $+$ | $+$ | \(q-2^{5}q^{2}+(175-\beta )q^{3}+2^{10}q^{4}+(133+\cdots)q^{5}+\cdots\) | |
14.12.a.d | $2$ | $10.757$ | \(\Q(\sqrt{352969}) \) | None | \(64\) | \(-350\) | \(3738\) | \(33614\) | $-$ | $-$ | \(q+2^{5}q^{2}+(-175-\beta )q^{3}+2^{10}q^{4}+\cdots\) |
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)