Properties

Label 14.12.a
Level $14$
Weight $12$
Character orbit 14.a
Rep. character $\chi_{14}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $4$
Sturm bound $24$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(24\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(14))\).

Total New Old
Modular forms 24 6 18
Cusp forms 20 6 14
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(4\)
Minus space\(-\)\(2\)

Trace form

\( 6 q - 486 q^{3} + 6144 q^{4} + 3874 q^{5} - 12608 q^{6} + 236810 q^{9} - 363456 q^{10} + 1323884 q^{11} - 497664 q^{12} + 2203470 q^{13} + 1075648 q^{14} + 5705912 q^{15} + 6291456 q^{16} - 1696024 q^{17}+ \cdots + 281841334172 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
14.12.a.a 14.a 1.a $1$ $10.757$ \(\Q\) None 14.12.a.a \(-32\) \(-396\) \(7350\) \(16807\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}-396q^{3}+2^{10}q^{4}+7350q^{5}+\cdots\)
14.12.a.b 14.a 1.a $1$ $10.757$ \(\Q\) None 14.12.a.b \(32\) \(-90\) \(-7480\) \(-16807\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}-90q^{3}+2^{10}q^{4}-7480q^{5}+\cdots\)
14.12.a.c 14.a 1.a $2$ $10.757$ \(\Q(\sqrt{153169}) \) None 14.12.a.c \(-64\) \(350\) \(266\) \(-33614\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}+(175-\beta )q^{3}+2^{10}q^{4}+(133+\cdots)q^{5}+\cdots\)
14.12.a.d 14.a 1.a $2$ $10.757$ \(\Q(\sqrt{352969}) \) None 14.12.a.d \(64\) \(-350\) \(3738\) \(33614\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}+(-175-\beta )q^{3}+2^{10}q^{4}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)