Properties

Label 14.6
Level 14
Weight 6
Dimension 10
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 72
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 14 = 2 \cdot 7 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(72\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(14))\).

Total New Old
Modular forms 36 10 26
Cusp forms 24 10 14
Eisenstein series 12 0 12

Trace form

\( 10 q + 18 q^{3} - 32 q^{4} + 66 q^{5} + 216 q^{6} + 232 q^{7} - 1218 q^{9} - 744 q^{10} - 444 q^{11} + 288 q^{12} + 3650 q^{13} - 120 q^{14} - 2568 q^{15} - 512 q^{16} - 3228 q^{17} + 1488 q^{18} + 3518 q^{19}+ \cdots + 667740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
14.6.a \(\chi_{14}(1, \cdot)\) 14.6.a.a 1 1
14.6.a.b 1
14.6.c \(\chi_{14}(9, \cdot)\) 14.6.c.a 4 2
14.6.c.b 4

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(14))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(14)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 1}\)