Defining parameters
Level: | \( N \) | = | \( 14 = 2 \cdot 7 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(14))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 10 | 26 |
Cusp forms | 24 | 10 | 14 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
14.6.a | \(\chi_{14}(1, \cdot)\) | 14.6.a.a | 1 | 1 |
14.6.a.b | 1 | |||
14.6.c | \(\chi_{14}(9, \cdot)\) | 14.6.c.a | 4 | 2 |
14.6.c.b | 4 |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(14))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(14)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 1}\)