Defining parameters
Level: | \( N \) | \(=\) | \( 140 = 2^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 140.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(140, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 60 | 4 | 56 |
Cusp forms | 36 | 4 | 32 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(140, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
140.2.i.a | $2$ | $1.118$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(1\) | \(5\) | \(q+(-1+\zeta_{6})q^{3}+\zeta_{6}q^{5}+(3-\zeta_{6})q^{7}+\cdots\) |
140.2.i.b | $2$ | $1.118$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(3\) | \(1\) | \(1\) | \(q+(3-3\zeta_{6})q^{3}+\zeta_{6}q^{5}+(-1+3\zeta_{6})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(140, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(140, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)