Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M2(Γ0(1400)).
|
Total |
New |
Old |
Modular forms
| 264 |
28 |
236 |
Cusp forms
| 217 |
28 |
189 |
Eisenstein series
| 47 |
0 |
47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 5 | 7 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | + | | 27 | 4 | 23 | | 22 | 4 | 18 | | 5 | 0 | 5 |
+ | + | − | − | | 39 | 5 | 34 | | 33 | 5 | 28 | | 6 | 0 | 6 |
+ | − | + | − | | 37 | 4 | 33 | | 31 | 4 | 27 | | 6 | 0 | 6 |
+ | − | − | + | | 29 | 2 | 27 | | 23 | 2 | 21 | | 6 | 0 | 6 |
− | + | + | − | | 33 | 3 | 30 | | 27 | 3 | 24 | | 6 | 0 | 6 |
− | + | − | + | | 33 | 2 | 31 | | 27 | 2 | 25 | | 6 | 0 | 6 |
− | − | + | + | | 35 | 3 | 32 | | 29 | 3 | 26 | | 6 | 0 | 6 |
− | − | − | − | | 31 | 5 | 26 | | 25 | 5 | 20 | | 6 | 0 | 6 |
Plus space | + | | 124 | 11 | 113 | | 101 | 11 | 90 | | 23 | 0 | 23 |
Minus space | − | | 140 | 17 | 123 | | 116 | 17 | 99 | | 24 | 0 | 24 |
Decomposition of S2new(Γ0(1400)) into newform subspaces
Decomposition of S2old(Γ0(1400)) into lower level spaces