Properties

Label 1400.2.bt
Level $1400$
Weight $2$
Character orbit 1400.bt
Rep. character $\chi_{1400}(29,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $720$
Sturm bound $480$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.bt (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 200 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1400, [\chi])\).

Total New Old
Modular forms 976 720 256
Cusp forms 944 720 224
Eisenstein series 32 0 32

Trace form

\( 720 q - 180 q^{9} + 8 q^{10} + 24 q^{16} + 24 q^{20} + 50 q^{22} + 28 q^{24} - 4 q^{25} + 20 q^{26} - 4 q^{30} - 30 q^{36} - 70 q^{38} + 32 q^{39} + 34 q^{40} + 8 q^{41} - 50 q^{42} + 42 q^{44} + 130 q^{48}+ \cdots - 56 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1400, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1400, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1400, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)