Properties

Label 1400.2.n
Level $1400$
Weight $2$
Character orbit 1400.n
Rep. character $\chi_{1400}(699,\cdot)$
Character field $\Q$
Dimension $140$
Sturm bound $480$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1400.n (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 280 \)
Character field: \(\Q\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1400, [\chi])\).

Total New Old
Modular forms 252 148 104
Cusp forms 228 140 88
Eisenstein series 24 8 16

Trace form

\( 140 q + 4 q^{4} + 140 q^{9} - 8 q^{11} + 12 q^{16} + 12 q^{36} - 2 q^{44} - 42 q^{46} + 4 q^{49} + 16 q^{51} - 26 q^{56} + 94 q^{64} + 14 q^{74} + 156 q^{81} + 68 q^{84} - 114 q^{86} - 64 q^{91} + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1400, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1400, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1400, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)