Properties

Label 1425.1.t
Level 14251425
Weight 11
Character orbit 1425.t
Rep. character χ1425(26,)\chi_{1425}(26,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 66
Newform subspaces 22
Sturm bound 200200
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1425=35219 1425 = 3 \cdot 5^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1425.t (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 57 57
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 2 2
Sturm bound: 200200
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M1(1425,[χ])M_{1}(1425, [\chi]).

Total New Old
Modular forms 36 18 18
Cusp forms 12 6 6
Eisenstein series 24 12 12

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 6 0 0 0

Trace form

6q+q3q4+2q6+2q7+q92q12q13+q16+4q19+q21+2q242q27q286q31+2q34q36+2q372q39q438q46++2q97+O(q100) 6 q + q^{3} - q^{4} + 2 q^{6} + 2 q^{7} + q^{9} - 2 q^{12} - q^{13} + q^{16} + 4 q^{19} + q^{21} + 2 q^{24} - 2 q^{27} - q^{28} - 6 q^{31} + 2 q^{34} - q^{36} + 2 q^{37} - 2 q^{39} - q^{43} - 8 q^{46}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(1425,[χ])S_{1}^{\mathrm{new}}(1425, [\chi]) into newform subspaces

Label Char Prim Dim AA Field Image CM RM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1425.1.t.a 1425.t 57.h 22 0.7110.711 Q(3)\Q(\sqrt{-3}) D3D_{3} Q(3)\Q(\sqrt{-3}) None 57.1.h.a 00 11 00 22 qζ62q3ζ6q4+q7ζ6q9q12+q-\zeta_{6}^{2}q^{3}-\zeta_{6}q^{4}+q^{7}-\zeta_{6}q^{9}-q^{12}+\cdots
1425.1.t.b 1425.t 57.h 44 0.7110.711 Q(ζ12)\Q(\zeta_{12}) D3D_{3} Q(15)\Q(\sqrt{-15}) None 285.1.n.a 00 00 00 00 q+ζ125q2+ζ125q3ζ124q6+q+\zeta_{12}^{5}q^{2}+\zeta_{12}^{5}q^{3}-\zeta_{12}^{4}q^{6}+\cdots

Decomposition of S1old(1425,[χ])S_{1}^{\mathrm{old}}(1425, [\chi]) into lower level spaces

S1old(1425,[χ]) S_{1}^{\mathrm{old}}(1425, [\chi]) \simeq S1new(57,[χ])S_{1}^{\mathrm{new}}(57, [\chi])3^{\oplus 3}