Defining parameters
Level: | \( N \) | \(=\) | \( 1425 = 3 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1425.t (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(200\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1425, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 18 | 18 |
Cusp forms | 12 | 6 | 6 |
Eisenstein series | 24 | 12 | 12 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 6 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1425, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1425.1.t.a | $2$ | $0.711$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(1\) | \(0\) | \(2\) | \(q-\zeta_{6}^{2}q^{3}-\zeta_{6}q^{4}+q^{7}-\zeta_{6}q^{9}-q^{12}+\cdots\) |
1425.1.t.b | $4$ | $0.711$ | \(\Q(\zeta_{12})\) | $D_{3}$ | \(\Q(\sqrt{-15}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{12}^{5}q^{2}+\zeta_{12}^{5}q^{3}-\zeta_{12}^{4}q^{6}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1425, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1425, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 3}\)