Defining parameters
Level: | \( N \) | \(=\) | \( 1425 = 3 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1425.bo (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 285 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Sturm bound: | \(400\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1425, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1272 | 744 | 528 |
Cusp forms | 1128 | 696 | 432 |
Eisenstein series | 144 | 48 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1425, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1425, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)