Properties

Label 1425.2.bo
Level $1425$
Weight $2$
Character orbit 1425.bo
Rep. character $\chi_{1425}(224,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $696$
Sturm bound $400$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.bo (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 285 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(400\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1425, [\chi])\).

Total New Old
Modular forms 1272 744 528
Cusp forms 1128 696 432
Eisenstein series 144 48 96

Trace form

\( 696 q + 12 q^{4} - 12 q^{6} + 12 q^{9} - 60 q^{16} + 12 q^{19} + 6 q^{21} + 24 q^{24} - 36 q^{31} - 60 q^{34} - 36 q^{36} - 24 q^{39} - 108 q^{46} + 336 q^{49} - 78 q^{51} + 36 q^{54} - 78 q^{61} + 360 q^{64}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1425, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1425, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)