Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M2(Γ0(144)).
|
Total |
New |
Old |
Modular forms
| 36 |
3 |
33 |
Cusp forms
| 13 |
2 |
11 |
Eisenstein series
| 23 |
1 |
22 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 3 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 8 | 0 | 8 | | 3 | 0 | 3 | | 5 | 0 | 5 |
+ | − | − | | 10 | 1 | 9 | | 4 | 1 | 3 | | 6 | 0 | 6 |
− | + | − | | 10 | 1 | 9 | | 4 | 1 | 3 | | 6 | 0 | 6 |
− | − | + | | 8 | 1 | 7 | | 2 | 0 | 2 | | 6 | 1 | 5 |
Plus space | + | | 16 | 1 | 15 | | 5 | 0 | 5 | | 11 | 1 | 10 |
Minus space | − | | 20 | 2 | 18 | | 8 | 2 | 6 | | 12 | 0 | 12 |
Decomposition of S2new(Γ0(144)) into newform subspaces
Decomposition of S2old(Γ0(144)) into lower level spaces