Properties

Label 144.2.a
Level 144144
Weight 22
Character orbit 144.a
Rep. character χ144(1,)\chi_{144}(1,\cdot)
Character field Q\Q
Dimension 22
Newform subspaces 22
Sturm bound 4848
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 144=2432 144 = 2^{4} \cdot 3^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 144.a (trivial)
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 4848
Trace bound: 55
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(144))M_{2}(\Gamma_0(144)).

Total New Old
Modular forms 36 3 33
Cusp forms 13 2 11
Eisenstein series 23 1 22

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

2233FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++880088330033550055
++--10101199441133660066
-++-10101199441133660066
--++881177220022661155
Plus space++16161115155500551111111010
Minus space-20202218188822661212001212

Trace form

2q+2q5+4q7+4q112q174q198q236q256q294q314q37+6q4112q43+2q49+2q53+8q55+4q59+12q614q65++16q97+O(q100) 2 q + 2 q^{5} + 4 q^{7} + 4 q^{11} - 2 q^{17} - 4 q^{19} - 8 q^{23} - 6 q^{25} - 6 q^{29} - 4 q^{31} - 4 q^{37} + 6 q^{41} - 12 q^{43} + 2 q^{49} + 2 q^{53} + 8 q^{55} + 4 q^{59} + 12 q^{61} - 4 q^{65}+ \cdots + 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(144))S_{2}^{\mathrm{new}}(\Gamma_0(144)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3
144.2.a.a 144.a 1.a 11 1.1501.150 Q\Q Q(3)\Q(\sqrt{-3}) 36.2.a.a 00 00 00 44 - ++ N(U(1))N(\mathrm{U}(1)) q+4q7+2q138q195q25+4q31+q+4q^{7}+2q^{13}-8q^{19}-5q^{25}+4q^{31}+\cdots
144.2.a.b 144.a 1.a 11 1.1501.150 Q\Q None 24.2.a.a 00 00 22 00 ++ - SU(2)\mathrm{SU}(2) q+2q5+4q112q132q17+4q19+q+2q^{5}+4q^{11}-2q^{13}-2q^{17}+4q^{19}+\cdots

Decomposition of S2old(Γ0(144))S_{2}^{\mathrm{old}}(\Gamma_0(144)) into lower level spaces

S2old(Γ0(144)) S_{2}^{\mathrm{old}}(\Gamma_0(144)) \simeq S2new(Γ0(24))S_{2}^{\mathrm{new}}(\Gamma_0(24))4^{\oplus 4}\oplusS2new(Γ0(36))S_{2}^{\mathrm{new}}(\Gamma_0(36))3^{\oplus 3}\oplusS2new(Γ0(48))S_{2}^{\mathrm{new}}(\Gamma_0(48))2^{\oplus 2}\oplusS2new(Γ0(72))S_{2}^{\mathrm{new}}(\Gamma_0(72))2^{\oplus 2}