Properties

Label 144.3
Level 144
Weight 3
Dimension 493
Nonzero newspaces 8
Newform subspaces 19
Sturm bound 3456
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 19 \)
Sturm bound: \(3456\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(144))\).

Total New Old
Modular forms 1264 533 731
Cusp forms 1040 493 547
Eisenstein series 224 40 184

Trace form

\( 493 q - 6 q^{2} - 6 q^{3} - 12 q^{4} - 15 q^{5} - 8 q^{6} - 23 q^{7} - 10 q^{9} + 20 q^{10} - 19 q^{11} - 8 q^{12} + 19 q^{13} + 40 q^{14} + 27 q^{15} + 68 q^{16} + 102 q^{17} + 92 q^{18} + 82 q^{19} + 80 q^{20}+ \cdots + 747 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(144))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
144.3.b \(\chi_{144}(55, \cdot)\) None 0 1
144.3.e \(\chi_{144}(17, \cdot)\) 144.3.e.a 2 1
144.3.e.b 2
144.3.g \(\chi_{144}(127, \cdot)\) 144.3.g.a 1 1
144.3.g.b 2
144.3.g.c 2
144.3.h \(\chi_{144}(89, \cdot)\) None 0 1
144.3.j \(\chi_{144}(53, \cdot)\) 144.3.j.a 32 2
144.3.m \(\chi_{144}(19, \cdot)\) 144.3.m.a 6 2
144.3.m.b 16
144.3.m.c 16
144.3.n \(\chi_{144}(41, \cdot)\) None 0 2
144.3.o \(\chi_{144}(31, \cdot)\) 144.3.o.a 8 2
144.3.o.b 8
144.3.o.c 8
144.3.q \(\chi_{144}(65, \cdot)\) 144.3.q.a 2 2
144.3.q.b 4
144.3.q.c 4
144.3.q.d 4
144.3.q.e 8
144.3.t \(\chi_{144}(7, \cdot)\) None 0 2
144.3.v \(\chi_{144}(43, \cdot)\) 144.3.v.a 184 4
144.3.w \(\chi_{144}(5, \cdot)\) 144.3.w.a 184 4

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(144))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(144)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)