Properties

Label 144.3
Level 144
Weight 3
Dimension 493
Nonzero newspaces 8
Newform subspaces 19
Sturm bound 3456
Trace bound 2

Downloads

Learn more

Defining parameters

Level: N N = 144=2432 144 = 2^{4} \cdot 3^{2}
Weight: k k = 3 3
Nonzero newspaces: 8 8
Newform subspaces: 19 19
Sturm bound: 34563456
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M3(Γ1(144))M_{3}(\Gamma_1(144)).

Total New Old
Modular forms 1264 533 731
Cusp forms 1040 493 547
Eisenstein series 224 40 184

Trace form

493q6q26q312q415q58q623q710q9+20q1019q118q12+19q13+40q14+27q15+68q16+102q17+92q18+82q19+80q20++747q99+O(q100) 493 q - 6 q^{2} - 6 q^{3} - 12 q^{4} - 15 q^{5} - 8 q^{6} - 23 q^{7} - 10 q^{9} + 20 q^{10} - 19 q^{11} - 8 q^{12} + 19 q^{13} + 40 q^{14} + 27 q^{15} + 68 q^{16} + 102 q^{17} + 92 q^{18} + 82 q^{19} + 80 q^{20}+ \cdots + 747 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(Γ1(144))S_{3}^{\mathrm{new}}(\Gamma_1(144))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
144.3.b χ144(55,)\chi_{144}(55, \cdot) None 0 1
144.3.e χ144(17,)\chi_{144}(17, \cdot) 144.3.e.a 2 1
144.3.e.b 2
144.3.g χ144(127,)\chi_{144}(127, \cdot) 144.3.g.a 1 1
144.3.g.b 2
144.3.g.c 2
144.3.h χ144(89,)\chi_{144}(89, \cdot) None 0 1
144.3.j χ144(53,)\chi_{144}(53, \cdot) 144.3.j.a 32 2
144.3.m χ144(19,)\chi_{144}(19, \cdot) 144.3.m.a 6 2
144.3.m.b 16
144.3.m.c 16
144.3.n χ144(41,)\chi_{144}(41, \cdot) None 0 2
144.3.o χ144(31,)\chi_{144}(31, \cdot) 144.3.o.a 8 2
144.3.o.b 8
144.3.o.c 8
144.3.q χ144(65,)\chi_{144}(65, \cdot) 144.3.q.a 2 2
144.3.q.b 4
144.3.q.c 4
144.3.q.d 4
144.3.q.e 8
144.3.t χ144(7,)\chi_{144}(7, \cdot) None 0 2
144.3.v χ144(43,)\chi_{144}(43, \cdot) 144.3.v.a 184 4
144.3.w χ144(5,)\chi_{144}(5, \cdot) 144.3.w.a 184 4

Decomposition of S3old(Γ1(144))S_{3}^{\mathrm{old}}(\Gamma_1(144)) into lower level spaces