Defining parameters
Level: | \( N \) | = | \( 144 = 2^{4} \cdot 3^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 8 \) | ||
Newform subspaces: | \( 26 \) | ||
Sturm bound: | \(4608\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(144))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1840 | 790 | 1050 |
Cusp forms | 1616 | 749 | 867 |
Eisenstein series | 224 | 41 | 183 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(144))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
144.4.a | \(\chi_{144}(1, \cdot)\) | 144.4.a.a | 1 | 1 |
144.4.a.b | 1 | |||
144.4.a.c | 1 | |||
144.4.a.d | 1 | |||
144.4.a.e | 1 | |||
144.4.a.f | 1 | |||
144.4.a.g | 1 | |||
144.4.c | \(\chi_{144}(143, \cdot)\) | 144.4.c.a | 2 | 1 |
144.4.c.b | 4 | |||
144.4.d | \(\chi_{144}(73, \cdot)\) | None | 0 | 1 |
144.4.f | \(\chi_{144}(71, \cdot)\) | None | 0 | 1 |
144.4.i | \(\chi_{144}(49, \cdot)\) | 144.4.i.a | 2 | 2 |
144.4.i.b | 4 | |||
144.4.i.c | 4 | |||
144.4.i.d | 6 | |||
144.4.i.e | 8 | |||
144.4.i.f | 10 | |||
144.4.k | \(\chi_{144}(37, \cdot)\) | 144.4.k.a | 10 | 2 |
144.4.k.b | 24 | |||
144.4.k.c | 24 | |||
144.4.l | \(\chi_{144}(35, \cdot)\) | 144.4.l.a | 48 | 2 |
144.4.p | \(\chi_{144}(23, \cdot)\) | None | 0 | 2 |
144.4.r | \(\chi_{144}(25, \cdot)\) | None | 0 | 2 |
144.4.s | \(\chi_{144}(47, \cdot)\) | 144.4.s.a | 2 | 2 |
144.4.s.b | 2 | |||
144.4.s.c | 10 | |||
144.4.s.d | 10 | |||
144.4.s.e | 12 | |||
144.4.u | \(\chi_{144}(11, \cdot)\) | 144.4.u.a | 280 | 4 |
144.4.x | \(\chi_{144}(13, \cdot)\) | 144.4.x.a | 280 | 4 |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(144))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(144)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)