Properties

Label 144.4
Level 144
Weight 4
Dimension 749
Nonzero newspaces 8
Newform subspaces 26
Sturm bound 4608
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 26 \)
Sturm bound: \(4608\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(144))\).

Total New Old
Modular forms 1840 790 1050
Cusp forms 1616 749 867
Eisenstein series 224 41 183

Trace form

\( 749 q - 6 q^{2} - 6 q^{3} + 4 q^{4} - 7 q^{5} - 8 q^{6} + 9 q^{7} - 48 q^{8} - 22 q^{9} - 84 q^{10} - 75 q^{11} - 8 q^{12} - 57 q^{13} + 120 q^{14} - 27 q^{15} - 252 q^{16} - 116 q^{17} - 148 q^{18} + 122 q^{19}+ \cdots - 1575 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(144))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
144.4.a \(\chi_{144}(1, \cdot)\) 144.4.a.a 1 1
144.4.a.b 1
144.4.a.c 1
144.4.a.d 1
144.4.a.e 1
144.4.a.f 1
144.4.a.g 1
144.4.c \(\chi_{144}(143, \cdot)\) 144.4.c.a 2 1
144.4.c.b 4
144.4.d \(\chi_{144}(73, \cdot)\) None 0 1
144.4.f \(\chi_{144}(71, \cdot)\) None 0 1
144.4.i \(\chi_{144}(49, \cdot)\) 144.4.i.a 2 2
144.4.i.b 4
144.4.i.c 4
144.4.i.d 6
144.4.i.e 8
144.4.i.f 10
144.4.k \(\chi_{144}(37, \cdot)\) 144.4.k.a 10 2
144.4.k.b 24
144.4.k.c 24
144.4.l \(\chi_{144}(35, \cdot)\) 144.4.l.a 48 2
144.4.p \(\chi_{144}(23, \cdot)\) None 0 2
144.4.r \(\chi_{144}(25, \cdot)\) None 0 2
144.4.s \(\chi_{144}(47, \cdot)\) 144.4.s.a 2 2
144.4.s.b 2
144.4.s.c 10
144.4.s.d 10
144.4.s.e 12
144.4.u \(\chi_{144}(11, \cdot)\) 144.4.u.a 280 4
144.4.x \(\chi_{144}(13, \cdot)\) 144.4.x.a 280 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(144))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(144)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)