Defining parameters
Level: | \( N \) | \(=\) | \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1440.bj (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 120 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1440, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 640 | 48 | 592 |
Cusp forms | 512 | 48 | 464 |
Eisenstein series | 128 | 0 | 128 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1440, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1440.2.bj.a | $48$ | $11.498$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1440, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1440, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)