Properties

Label 1440.2.bj
Level $1440$
Weight $2$
Character orbit 1440.bj
Rep. character $\chi_{1440}(17,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $48$
Newform subspaces $1$
Sturm bound $576$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.bj (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 120 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(576\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1440, [\chi])\).

Total New Old
Modular forms 640 48 592
Cusp forms 512 48 464
Eisenstein series 128 0 128

Trace form

\( 48 q - 32 q^{31} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1440, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1440.2.bj.a 1440.bj 120.w $48$ $11.498$ None 360.2.x.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1440, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1440, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 2}\)