Properties

Label 1440.3.e.a.991.2
Level $1440$
Weight $3$
Character 1440.991
Analytic conductor $39.237$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,3,Mod(991,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.991");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1440.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.2371580679\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 991.2
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 1440.991
Dual form 1440.3.e.a.991.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{5} +1.23607i q^{7} -11.4164i q^{11} +5.41641 q^{13} -6.94427 q^{17} +29.8885i q^{19} +19.1246i q^{23} +5.00000 q^{25} -21.0557 q^{29} -34.4721i q^{31} -2.76393i q^{35} -19.3050 q^{37} +58.1378 q^{41} -62.7639i q^{43} +63.4853i q^{47} +47.4721 q^{49} +98.1378 q^{53} +25.5279i q^{55} -19.2786i q^{59} +1.19350 q^{61} -12.1115 q^{65} -5.01316i q^{67} +84.3607i q^{71} -70.7214 q^{73} +14.1115 q^{77} +124.498i q^{79} +160.652i q^{83} +15.5279 q^{85} -46.2229 q^{89} +6.69505i q^{91} -66.8328i q^{95} +133.331 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{13} + 8 q^{17} + 20 q^{25} - 120 q^{29} + 48 q^{37} + 172 q^{49} + 160 q^{53} - 192 q^{61} - 120 q^{65} - 104 q^{73} + 128 q^{77} + 80 q^{85} - 328 q^{89} + 104 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) 1.23607i 0.176581i 0.996095 + 0.0882906i \(0.0281404\pi\)
−0.996095 + 0.0882906i \(0.971860\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 11.4164i − 1.03786i −0.854818 0.518928i \(-0.826331\pi\)
0.854818 0.518928i \(-0.173669\pi\)
\(12\) 0 0
\(13\) 5.41641 0.416647 0.208323 0.978060i \(-0.433199\pi\)
0.208323 + 0.978060i \(0.433199\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.94427 −0.408487 −0.204243 0.978920i \(-0.565473\pi\)
−0.204243 + 0.978920i \(0.565473\pi\)
\(18\) 0 0
\(19\) 29.8885i 1.57308i 0.617539 + 0.786541i \(0.288130\pi\)
−0.617539 + 0.786541i \(0.711870\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 19.1246i 0.831505i 0.909478 + 0.415752i \(0.136482\pi\)
−0.909478 + 0.415752i \(0.863518\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −21.0557 −0.726060 −0.363030 0.931778i \(-0.618258\pi\)
−0.363030 + 0.931778i \(0.618258\pi\)
\(30\) 0 0
\(31\) − 34.4721i − 1.11200i −0.831181 0.556002i \(-0.812335\pi\)
0.831181 0.556002i \(-0.187665\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 2.76393i − 0.0789695i
\(36\) 0 0
\(37\) −19.3050 −0.521755 −0.260878 0.965372i \(-0.584012\pi\)
−0.260878 + 0.965372i \(0.584012\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 58.1378 1.41799 0.708997 0.705211i \(-0.249148\pi\)
0.708997 + 0.705211i \(0.249148\pi\)
\(42\) 0 0
\(43\) − 62.7639i − 1.45963i −0.683647 0.729813i \(-0.739607\pi\)
0.683647 0.729813i \(-0.260393\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 63.4853i 1.35075i 0.737474 + 0.675375i \(0.236018\pi\)
−0.737474 + 0.675375i \(0.763982\pi\)
\(48\) 0 0
\(49\) 47.4721 0.968819
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 98.1378 1.85166 0.925828 0.377945i \(-0.123369\pi\)
0.925828 + 0.377945i \(0.123369\pi\)
\(54\) 0 0
\(55\) 25.5279i 0.464143i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 19.2786i − 0.326757i −0.986563 0.163378i \(-0.947761\pi\)
0.986563 0.163378i \(-0.0522391\pi\)
\(60\) 0 0
\(61\) 1.19350 0.0195655 0.00978275 0.999952i \(-0.496886\pi\)
0.00978275 + 0.999952i \(0.496886\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.1115 −0.186330
\(66\) 0 0
\(67\) − 5.01316i − 0.0748232i −0.999300 0.0374116i \(-0.988089\pi\)
0.999300 0.0374116i \(-0.0119113\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 84.3607i 1.18818i 0.804399 + 0.594089i \(0.202487\pi\)
−0.804399 + 0.594089i \(0.797513\pi\)
\(72\) 0 0
\(73\) −70.7214 −0.968786 −0.484393 0.874851i \(-0.660959\pi\)
−0.484393 + 0.874851i \(0.660959\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14.1115 0.183266
\(78\) 0 0
\(79\) 124.498i 1.57593i 0.615720 + 0.787965i \(0.288865\pi\)
−0.615720 + 0.787965i \(0.711135\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 160.652i 1.93557i 0.251774 + 0.967786i \(0.418986\pi\)
−0.251774 + 0.967786i \(0.581014\pi\)
\(84\) 0 0
\(85\) 15.5279 0.182681
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −46.2229 −0.519359 −0.259679 0.965695i \(-0.583617\pi\)
−0.259679 + 0.965695i \(0.583617\pi\)
\(90\) 0 0
\(91\) 6.69505i 0.0735720i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 66.8328i − 0.703503i
\(96\) 0 0
\(97\) 133.331 1.37455 0.687275 0.726398i \(-0.258807\pi\)
0.687275 + 0.726398i \(0.258807\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 49.7771 0.492842 0.246421 0.969163i \(-0.420745\pi\)
0.246421 + 0.969163i \(0.420745\pi\)
\(102\) 0 0
\(103\) 196.705i 1.90976i 0.296995 + 0.954879i \(0.404016\pi\)
−0.296995 + 0.954879i \(0.595984\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.9017i 0.139268i 0.997573 + 0.0696341i \(0.0221832\pi\)
−0.997573 + 0.0696341i \(0.977817\pi\)
\(108\) 0 0
\(109\) 174.859 1.60421 0.802106 0.597182i \(-0.203713\pi\)
0.802106 + 0.597182i \(0.203713\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 33.0557 0.292529 0.146264 0.989246i \(-0.453275\pi\)
0.146264 + 0.989246i \(0.453275\pi\)
\(114\) 0 0
\(115\) − 42.7639i − 0.371860i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 8.58359i − 0.0721310i
\(120\) 0 0
\(121\) −9.33437 −0.0771435
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) 93.7345i 0.738067i 0.929416 + 0.369034i \(0.120311\pi\)
−0.929416 + 0.369034i \(0.879689\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 80.8065i − 0.616844i −0.951250 0.308422i \(-0.900199\pi\)
0.951250 0.308422i \(-0.0998008\pi\)
\(132\) 0 0
\(133\) −36.9443 −0.277776
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 192.164 1.40266 0.701329 0.712838i \(-0.252591\pi\)
0.701329 + 0.712838i \(0.252591\pi\)
\(138\) 0 0
\(139\) − 6.60990i − 0.0475533i −0.999717 0.0237766i \(-0.992431\pi\)
0.999717 0.0237766i \(-0.00756905\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 61.8359i − 0.432419i
\(144\) 0 0
\(145\) 47.0820 0.324704
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 199.803 1.34096 0.670481 0.741927i \(-0.266088\pi\)
0.670481 + 0.741927i \(0.266088\pi\)
\(150\) 0 0
\(151\) − 53.2523i − 0.352664i −0.984331 0.176332i \(-0.943577\pi\)
0.984331 0.176332i \(-0.0564233\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 77.0820i 0.497303i
\(156\) 0 0
\(157\) 43.8034 0.279003 0.139501 0.990222i \(-0.455450\pi\)
0.139501 + 0.990222i \(0.455450\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −23.6393 −0.146828
\(162\) 0 0
\(163\) − 188.705i − 1.15770i −0.815434 0.578850i \(-0.803502\pi\)
0.815434 0.578850i \(-0.196498\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 260.705i 1.56111i 0.625088 + 0.780554i \(0.285063\pi\)
−0.625088 + 0.780554i \(0.714937\pi\)
\(168\) 0 0
\(169\) −139.663 −0.826405
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −28.6950 −0.165867 −0.0829337 0.996555i \(-0.526429\pi\)
−0.0829337 + 0.996555i \(0.526429\pi\)
\(174\) 0 0
\(175\) 6.18034i 0.0353162i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 95.5016i 0.533528i 0.963762 + 0.266764i \(0.0859545\pi\)
−0.963762 + 0.266764i \(0.914046\pi\)
\(180\) 0 0
\(181\) −176.885 −0.977268 −0.488634 0.872489i \(-0.662505\pi\)
−0.488634 + 0.872489i \(0.662505\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 43.1672 0.233336
\(186\) 0 0
\(187\) 79.2786i 0.423950i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 231.967i 1.21449i 0.794515 + 0.607245i \(0.207725\pi\)
−0.794515 + 0.607245i \(0.792275\pi\)
\(192\) 0 0
\(193\) 168.387 0.872471 0.436236 0.899832i \(-0.356311\pi\)
0.436236 + 0.899832i \(0.356311\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 31.0820 0.157777 0.0788884 0.996883i \(-0.474863\pi\)
0.0788884 + 0.996883i \(0.474863\pi\)
\(198\) 0 0
\(199\) − 123.777i − 0.621995i −0.950411 0.310998i \(-0.899337\pi\)
0.950411 0.310998i \(-0.100663\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 26.0263i − 0.128208i
\(204\) 0 0
\(205\) −130.000 −0.634146
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 341.220 1.63263
\(210\) 0 0
\(211\) 34.2492i 0.162319i 0.996701 + 0.0811593i \(0.0258623\pi\)
−0.996701 + 0.0811593i \(0.974138\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 140.344i 0.652765i
\(216\) 0 0
\(217\) 42.6099 0.196359
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −37.6130 −0.170195
\(222\) 0 0
\(223\) 202.987i 0.910255i 0.890426 + 0.455127i \(0.150406\pi\)
−0.890426 + 0.455127i \(0.849594\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 232.207i − 1.02294i −0.859302 0.511468i \(-0.829102\pi\)
0.859302 0.511468i \(-0.170898\pi\)
\(228\) 0 0
\(229\) −163.390 −0.713494 −0.356747 0.934201i \(-0.616114\pi\)
−0.356747 + 0.934201i \(0.616114\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.2198 0.0481537 0.0240768 0.999710i \(-0.492335\pi\)
0.0240768 + 0.999710i \(0.492335\pi\)
\(234\) 0 0
\(235\) − 141.957i − 0.604074i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 216.721i 0.906784i 0.891311 + 0.453392i \(0.149786\pi\)
−0.891311 + 0.453392i \(0.850214\pi\)
\(240\) 0 0
\(241\) −49.1409 −0.203904 −0.101952 0.994789i \(-0.532509\pi\)
−0.101952 + 0.994789i \(0.532509\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −106.151 −0.433269
\(246\) 0 0
\(247\) 161.889i 0.655419i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 282.525i − 1.12560i −0.826594 0.562798i \(-0.809725\pi\)
0.826594 0.562798i \(-0.190275\pi\)
\(252\) 0 0
\(253\) 218.334 0.862982
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −199.941 −0.777981 −0.388991 0.921242i \(-0.627176\pi\)
−0.388991 + 0.921242i \(0.627176\pi\)
\(258\) 0 0
\(259\) − 23.8622i − 0.0921322i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 247.761i − 0.942056i −0.882118 0.471028i \(-0.843883\pi\)
0.882118 0.471028i \(-0.156117\pi\)
\(264\) 0 0
\(265\) −219.443 −0.828086
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.4164 −0.0498751 −0.0249376 0.999689i \(-0.507939\pi\)
−0.0249376 + 0.999689i \(0.507939\pi\)
\(270\) 0 0
\(271\) 59.4690i 0.219443i 0.993962 + 0.109721i \(0.0349959\pi\)
−0.993962 + 0.109721i \(0.965004\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 57.0820i − 0.207571i
\(276\) 0 0
\(277\) 510.859 1.84426 0.922128 0.386884i \(-0.126449\pi\)
0.922128 + 0.386884i \(0.126449\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −489.299 −1.74128 −0.870638 0.491924i \(-0.836294\pi\)
−0.870638 + 0.491924i \(0.836294\pi\)
\(282\) 0 0
\(283\) 210.233i 0.742873i 0.928458 + 0.371436i \(0.121135\pi\)
−0.928458 + 0.371436i \(0.878865\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 71.8622i 0.250391i
\(288\) 0 0
\(289\) −240.777 −0.833139
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −208.472 −0.711509 −0.355754 0.934579i \(-0.615776\pi\)
−0.355754 + 0.934579i \(0.615776\pi\)
\(294\) 0 0
\(295\) 43.1084i 0.146130i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 103.587i 0.346444i
\(300\) 0 0
\(301\) 77.5805 0.257742
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.66874 −0.00874996
\(306\) 0 0
\(307\) − 229.564i − 0.747766i −0.927476 0.373883i \(-0.878026\pi\)
0.927476 0.373883i \(-0.121974\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 351.692i − 1.13084i −0.824802 0.565421i \(-0.808714\pi\)
0.824802 0.565421i \(-0.191286\pi\)
\(312\) 0 0
\(313\) 418.551 1.33722 0.668612 0.743612i \(-0.266889\pi\)
0.668612 + 0.743612i \(0.266889\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 351.082 1.10751 0.553757 0.832678i \(-0.313194\pi\)
0.553757 + 0.832678i \(0.313194\pi\)
\(318\) 0 0
\(319\) 240.381i 0.753545i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 207.554i − 0.642583i
\(324\) 0 0
\(325\) 27.0820 0.0833294
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −78.4721 −0.238517
\(330\) 0 0
\(331\) − 630.853i − 1.90590i −0.303127 0.952950i \(-0.598031\pi\)
0.303127 0.952950i \(-0.401969\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 11.2098i 0.0334620i
\(336\) 0 0
\(337\) 284.780 0.845045 0.422523 0.906352i \(-0.361145\pi\)
0.422523 + 0.906352i \(0.361145\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −393.548 −1.15410
\(342\) 0 0
\(343\) 119.246i 0.347656i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 118.902i 0.342656i 0.985214 + 0.171328i \(0.0548058\pi\)
−0.985214 + 0.171328i \(0.945194\pi\)
\(348\) 0 0
\(349\) −19.0495 −0.0545831 −0.0272916 0.999628i \(-0.508688\pi\)
−0.0272916 + 0.999628i \(0.508688\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 96.3344 0.272902 0.136451 0.990647i \(-0.456430\pi\)
0.136451 + 0.990647i \(0.456430\pi\)
\(354\) 0 0
\(355\) − 188.636i − 0.531370i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 15.0031i − 0.0417914i −0.999782 0.0208957i \(-0.993348\pi\)
0.999782 0.0208957i \(-0.00665179\pi\)
\(360\) 0 0
\(361\) −532.325 −1.47458
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 158.138 0.433254
\(366\) 0 0
\(367\) 439.348i 1.19713i 0.801073 + 0.598566i \(0.204263\pi\)
−0.801073 + 0.598566i \(0.795737\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 121.305i 0.326968i
\(372\) 0 0
\(373\) −346.689 −0.929461 −0.464730 0.885452i \(-0.653849\pi\)
−0.464730 + 0.885452i \(0.653849\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −114.046 −0.302510
\(378\) 0 0
\(379\) − 338.768i − 0.893846i −0.894572 0.446923i \(-0.852520\pi\)
0.894572 0.446923i \(-0.147480\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 142.351i 0.371673i 0.982581 + 0.185836i \(0.0594994\pi\)
−0.982581 + 0.185836i \(0.940501\pi\)
\(384\) 0 0
\(385\) −31.5542 −0.0819589
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −91.6331 −0.235561 −0.117780 0.993040i \(-0.537578\pi\)
−0.117780 + 0.993040i \(0.537578\pi\)
\(390\) 0 0
\(391\) − 132.807i − 0.339659i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 278.387i − 0.704777i
\(396\) 0 0
\(397\) −384.354 −0.968147 −0.484074 0.875027i \(-0.660843\pi\)
−0.484074 + 0.875027i \(0.660843\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 416.545 1.03877 0.519383 0.854542i \(-0.326162\pi\)
0.519383 + 0.854542i \(0.326162\pi\)
\(402\) 0 0
\(403\) − 186.715i − 0.463313i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 220.393i 0.541507i
\(408\) 0 0
\(409\) 764.354 1.86884 0.934419 0.356177i \(-0.115920\pi\)
0.934419 + 0.356177i \(0.115920\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 23.8297 0.0576991
\(414\) 0 0
\(415\) − 359.230i − 0.865614i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 117.613i 0.280699i 0.990102 + 0.140350i \(0.0448227\pi\)
−0.990102 + 0.140350i \(0.955177\pi\)
\(420\) 0 0
\(421\) −429.915 −1.02118 −0.510588 0.859826i \(-0.670572\pi\)
−0.510588 + 0.859826i \(0.670572\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −34.7214 −0.0816973
\(426\) 0 0
\(427\) 1.47524i 0.00345490i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 596.466i − 1.38391i −0.721940 0.691956i \(-0.756749\pi\)
0.721940 0.691956i \(-0.243251\pi\)
\(432\) 0 0
\(433\) −678.551 −1.56709 −0.783546 0.621333i \(-0.786591\pi\)
−0.783546 + 0.621333i \(0.786591\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −571.607 −1.30802
\(438\) 0 0
\(439\) 324.774i 0.739804i 0.929071 + 0.369902i \(0.120609\pi\)
−0.929071 + 0.369902i \(0.879391\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 49.4064i − 0.111527i −0.998444 0.0557634i \(-0.982241\pi\)
0.998444 0.0557634i \(-0.0177592\pi\)
\(444\) 0 0
\(445\) 103.358 0.232264
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 186.859 0.416167 0.208084 0.978111i \(-0.433277\pi\)
0.208084 + 0.978111i \(0.433277\pi\)
\(450\) 0 0
\(451\) − 663.724i − 1.47167i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 14.9706i − 0.0329024i
\(456\) 0 0
\(457\) −645.214 −1.41185 −0.705923 0.708289i \(-0.749468\pi\)
−0.705923 + 0.708289i \(0.749468\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.7864 −0.0233978 −0.0116989 0.999932i \(-0.503724\pi\)
−0.0116989 + 0.999932i \(0.503724\pi\)
\(462\) 0 0
\(463\) − 594.233i − 1.28344i −0.766939 0.641720i \(-0.778221\pi\)
0.766939 0.641720i \(-0.221779\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 246.148i − 0.527083i −0.964648 0.263542i \(-0.915109\pi\)
0.964648 0.263542i \(-0.0848906\pi\)
\(468\) 0 0
\(469\) 6.19660 0.0132124
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −716.539 −1.51488
\(474\) 0 0
\(475\) 149.443i 0.314616i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 722.610i − 1.50858i −0.656541 0.754290i \(-0.727981\pi\)
0.656541 0.754290i \(-0.272019\pi\)
\(480\) 0 0
\(481\) −104.563 −0.217388
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −298.138 −0.614717
\(486\) 0 0
\(487\) 482.403i 0.990561i 0.868733 + 0.495281i \(0.164935\pi\)
−0.868733 + 0.495281i \(0.835065\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 235.967i − 0.480585i −0.970700 0.240293i \(-0.922757\pi\)
0.970700 0.240293i \(-0.0772434\pi\)
\(492\) 0 0
\(493\) 146.217 0.296586
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −104.276 −0.209810
\(498\) 0 0
\(499\) 591.331i 1.18503i 0.805558 + 0.592516i \(0.201865\pi\)
−0.805558 + 0.592516i \(0.798135\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 708.843i 1.40923i 0.709590 + 0.704615i \(0.248880\pi\)
−0.709590 + 0.704615i \(0.751120\pi\)
\(504\) 0 0
\(505\) −111.305 −0.220406
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −801.489 −1.57463 −0.787317 0.616548i \(-0.788531\pi\)
−0.787317 + 0.616548i \(0.788531\pi\)
\(510\) 0 0
\(511\) − 87.4164i − 0.171069i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 439.846i − 0.854070i
\(516\) 0 0
\(517\) 724.774 1.40188
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −285.882 −0.548718 −0.274359 0.961627i \(-0.588466\pi\)
−0.274359 + 0.961627i \(0.588466\pi\)
\(522\) 0 0
\(523\) 493.013i 0.942664i 0.881956 + 0.471332i \(0.156227\pi\)
−0.881956 + 0.471332i \(0.843773\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 239.384i 0.454239i
\(528\) 0 0
\(529\) 163.249 0.308600
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 314.898 0.590803
\(534\) 0 0
\(535\) − 33.3212i − 0.0622826i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 541.961i − 1.00549i
\(540\) 0 0
\(541\) −906.774 −1.67611 −0.838054 0.545588i \(-0.816306\pi\)
−0.838054 + 0.545588i \(0.816306\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −390.997 −0.717425
\(546\) 0 0
\(547\) 111.420i 0.203693i 0.994800 + 0.101847i \(0.0324751\pi\)
−0.994800 + 0.101847i \(0.967525\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 629.325i − 1.14215i
\(552\) 0 0
\(553\) −153.889 −0.278279
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 462.255 0.829902 0.414951 0.909844i \(-0.363799\pi\)
0.414951 + 0.909844i \(0.363799\pi\)
\(558\) 0 0
\(559\) − 339.955i − 0.608149i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 640.555i − 1.13775i −0.822423 0.568876i \(-0.807378\pi\)
0.822423 0.568876i \(-0.192622\pi\)
\(564\) 0 0
\(565\) −73.9149 −0.130823
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −817.915 −1.43746 −0.718730 0.695289i \(-0.755276\pi\)
−0.718730 + 0.695289i \(0.755276\pi\)
\(570\) 0 0
\(571\) − 470.642i − 0.824242i −0.911129 0.412121i \(-0.864788\pi\)
0.911129 0.412121i \(-0.135212\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 95.6231i 0.166301i
\(576\) 0 0
\(577\) 1051.17 1.82178 0.910890 0.412649i \(-0.135396\pi\)
0.910890 + 0.412649i \(0.135396\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −198.577 −0.341786
\(582\) 0 0
\(583\) − 1120.38i − 1.92175i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 267.708i − 0.456062i −0.973654 0.228031i \(-0.926771\pi\)
0.973654 0.228031i \(-0.0732287\pi\)
\(588\) 0 0
\(589\) 1030.32 1.74927
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 168.440 0.284047 0.142023 0.989863i \(-0.454639\pi\)
0.142023 + 0.989863i \(0.454639\pi\)
\(594\) 0 0
\(595\) 19.1935i 0.0322580i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 626.715i − 1.04627i −0.852250 0.523135i \(-0.824763\pi\)
0.852250 0.523135i \(-0.175237\pi\)
\(600\) 0 0
\(601\) −359.252 −0.597758 −0.298879 0.954291i \(-0.596613\pi\)
−0.298879 + 0.954291i \(0.596613\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 20.8723 0.0344996
\(606\) 0 0
\(607\) 679.728i 1.11982i 0.828555 + 0.559908i \(0.189164\pi\)
−0.828555 + 0.559908i \(0.810836\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 343.862i 0.562786i
\(612\) 0 0
\(613\) −748.958 −1.22179 −0.610896 0.791711i \(-0.709191\pi\)
−0.610896 + 0.791711i \(0.709191\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 947.876 1.53627 0.768133 0.640290i \(-0.221186\pi\)
0.768133 + 0.640290i \(0.221186\pi\)
\(618\) 0 0
\(619\) 1074.32i 1.73558i 0.496934 + 0.867788i \(0.334459\pi\)
−0.496934 + 0.867788i \(0.665541\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 57.1347i − 0.0917089i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 134.059 0.213130
\(630\) 0 0
\(631\) − 1061.67i − 1.68253i −0.540627 0.841263i \(-0.681813\pi\)
0.540627 0.841263i \(-0.318187\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 209.597i − 0.330074i
\(636\) 0 0
\(637\) 257.128 0.403655
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −497.404 −0.775981 −0.387991 0.921663i \(-0.626831\pi\)
−0.387991 + 0.921663i \(0.626831\pi\)
\(642\) 0 0
\(643\) 604.397i 0.939964i 0.882676 + 0.469982i \(0.155740\pi\)
−0.882676 + 0.469982i \(0.844260\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 693.151i 1.07133i 0.844430 + 0.535665i \(0.179939\pi\)
−0.844430 + 0.535665i \(0.820061\pi\)
\(648\) 0 0
\(649\) −220.093 −0.339126
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 948.853 1.45307 0.726534 0.687131i \(-0.241130\pi\)
0.726534 + 0.687131i \(0.241130\pi\)
\(654\) 0 0
\(655\) 180.689i 0.275861i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 889.260i 1.34941i 0.738088 + 0.674704i \(0.235729\pi\)
−0.738088 + 0.674704i \(0.764271\pi\)
\(660\) 0 0
\(661\) −664.354 −1.00507 −0.502537 0.864555i \(-0.667600\pi\)
−0.502537 + 0.864555i \(0.667600\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 82.6099 0.124225
\(666\) 0 0
\(667\) − 402.683i − 0.603722i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 13.6254i − 0.0203062i
\(672\) 0 0
\(673\) 429.437 0.638093 0.319046 0.947739i \(-0.396637\pi\)
0.319046 + 0.947739i \(0.396637\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −336.918 −0.497663 −0.248832 0.968547i \(-0.580047\pi\)
−0.248832 + 0.968547i \(0.580047\pi\)
\(678\) 0 0
\(679\) 164.807i 0.242719i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 818.200i 1.19795i 0.800767 + 0.598975i \(0.204425\pi\)
−0.800767 + 0.598975i \(0.795575\pi\)
\(684\) 0 0
\(685\) −429.692 −0.627288
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 531.554 0.771486
\(690\) 0 0
\(691\) − 356.689i − 0.516192i −0.966119 0.258096i \(-0.916905\pi\)
0.966119 0.258096i \(-0.0830951\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.7802i 0.0212665i
\(696\) 0 0
\(697\) −403.724 −0.579232
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −50.0851 −0.0714481 −0.0357241 0.999362i \(-0.511374\pi\)
−0.0357241 + 0.999362i \(0.511374\pi\)
\(702\) 0 0
\(703\) − 576.997i − 0.820764i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 61.5279i 0.0870267i
\(708\) 0 0
\(709\) −698.604 −0.985337 −0.492668 0.870217i \(-0.663978\pi\)
−0.492668 + 0.870217i \(0.663978\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 659.266 0.924637
\(714\) 0 0
\(715\) 138.269i 0.193384i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 246.387i − 0.342680i −0.985212 0.171340i \(-0.945190\pi\)
0.985212 0.171340i \(-0.0548097\pi\)
\(720\) 0 0
\(721\) −243.141 −0.337227
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −105.279 −0.145212
\(726\) 0 0
\(727\) 256.134i 0.352316i 0.984362 + 0.176158i \(0.0563670\pi\)
−0.984362 + 0.176158i \(0.943633\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 435.850i 0.596238i
\(732\) 0 0
\(733\) 897.574 1.22452 0.612261 0.790656i \(-0.290260\pi\)
0.612261 + 0.790656i \(0.290260\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −57.2322 −0.0776557
\(738\) 0 0
\(739\) − 268.486i − 0.363310i −0.983362 0.181655i \(-0.941855\pi\)
0.983362 0.181655i \(-0.0581454\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 612.049i − 0.823753i −0.911240 0.411877i \(-0.864873\pi\)
0.911240 0.411877i \(-0.135127\pi\)
\(744\) 0 0
\(745\) −446.774 −0.599697
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −18.4195 −0.0245921
\(750\) 0 0
\(751\) − 142.485i − 0.189726i −0.995490 0.0948632i \(-0.969759\pi\)
0.995490 0.0948632i \(-0.0302414\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 119.076i 0.157716i
\(756\) 0 0
\(757\) −636.342 −0.840610 −0.420305 0.907383i \(-0.638077\pi\)
−0.420305 + 0.907383i \(0.638077\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −591.666 −0.777484 −0.388742 0.921347i \(-0.627090\pi\)
−0.388742 + 0.921347i \(0.627090\pi\)
\(762\) 0 0
\(763\) 216.138i 0.283274i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 104.421i − 0.136142i
\(768\) 0 0
\(769\) 0.216701 0.000281796 0 0.000140898 1.00000i \(-0.499955\pi\)
0.000140898 1.00000i \(0.499955\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −762.807 −0.986813 −0.493407 0.869799i \(-0.664249\pi\)
−0.493407 + 0.869799i \(0.664249\pi\)
\(774\) 0 0
\(775\) − 172.361i − 0.222401i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1737.65i 2.23062i
\(780\) 0 0
\(781\) 963.096 1.23316
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −97.9474 −0.124774
\(786\) 0 0
\(787\) 1311.80i 1.66684i 0.552642 + 0.833419i \(0.313620\pi\)
−0.552642 + 0.833419i \(0.686380\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 40.8591i 0.0516550i
\(792\) 0 0
\(793\) 6.46446 0.00815190
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1341.85 1.68363 0.841813 0.539769i \(-0.181489\pi\)
0.841813 + 0.539769i \(0.181489\pi\)
\(798\) 0 0
\(799\) − 440.859i − 0.551764i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 807.384i 1.00546i
\(804\) 0 0
\(805\) 52.8591 0.0656635
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 53.8948 0.0666190 0.0333095 0.999445i \(-0.489395\pi\)
0.0333095 + 0.999445i \(0.489395\pi\)
\(810\) 0 0
\(811\) 20.9644i 0.0258500i 0.999916 + 0.0129250i \(0.00411427\pi\)
−0.999916 + 0.0129250i \(0.995886\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 421.957i 0.517739i
\(816\) 0 0
\(817\) 1875.92 2.29611
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 363.240 0.442436 0.221218 0.975224i \(-0.428997\pi\)
0.221218 + 0.975224i \(0.428997\pi\)
\(822\) 0 0
\(823\) 1487.42i 1.80732i 0.428256 + 0.903658i \(0.359128\pi\)
−0.428256 + 0.903658i \(0.640872\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 948.981i − 1.14750i −0.819031 0.573749i \(-0.805489\pi\)
0.819031 0.573749i \(-0.194511\pi\)
\(828\) 0 0
\(829\) 1114.06 1.34386 0.671930 0.740614i \(-0.265465\pi\)
0.671930 + 0.740614i \(0.265465\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −329.659 −0.395750
\(834\) 0 0
\(835\) − 582.954i − 0.698149i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 145.272i − 0.173149i −0.996245 0.0865747i \(-0.972408\pi\)
0.996245 0.0865747i \(-0.0275921\pi\)
\(840\) 0 0
\(841\) −397.656 −0.472837
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 312.295 0.369580
\(846\) 0 0
\(847\) − 11.5379i − 0.0136221i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 369.200i − 0.433842i
\(852\) 0 0
\(853\) −127.423 −0.149382 −0.0746909 0.997207i \(-0.523797\pi\)
−0.0746909 + 0.997207i \(0.523797\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 576.715 0.672946 0.336473 0.941693i \(-0.390766\pi\)
0.336473 + 0.941693i \(0.390766\pi\)
\(858\) 0 0
\(859\) 513.155i 0.597386i 0.954349 + 0.298693i \(0.0965507\pi\)
−0.954349 + 0.298693i \(0.903449\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 774.488i − 0.897437i −0.893673 0.448719i \(-0.851881\pi\)
0.893673 0.448719i \(-0.148119\pi\)
\(864\) 0 0
\(865\) 64.1641 0.0741781
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1421.33 1.63559
\(870\) 0 0
\(871\) − 27.1533i − 0.0311749i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 13.8197i − 0.0157939i
\(876\) 0 0
\(877\) 1335.13 1.52239 0.761194 0.648524i \(-0.224613\pi\)
0.761194 + 0.648524i \(0.224613\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −29.7570 −0.0337764 −0.0168882 0.999857i \(-0.505376\pi\)
−0.0168882 + 0.999857i \(0.505376\pi\)
\(882\) 0 0
\(883\) − 105.544i − 0.119529i −0.998213 0.0597645i \(-0.980965\pi\)
0.998213 0.0597645i \(-0.0190350\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 60.2268i − 0.0678994i −0.999424 0.0339497i \(-0.989191\pi\)
0.999424 0.0339497i \(-0.0108086\pi\)
\(888\) 0 0
\(889\) −115.862 −0.130329
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1897.48 −2.12484
\(894\) 0 0
\(895\) − 213.548i − 0.238601i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 725.836i 0.807381i
\(900\) 0 0
\(901\) −681.495 −0.756377
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 395.528 0.437047
\(906\) 0 0
\(907\) 155.473i 0.171414i 0.996320 + 0.0857072i \(0.0273150\pi\)
−0.996320 + 0.0857072i \(0.972685\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 686.630i − 0.753710i −0.926272 0.376855i \(-0.877005\pi\)
0.926272 0.376855i \(-0.122995\pi\)
\(912\) 0 0
\(913\) 1834.07 2.00884
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 99.8823 0.108923
\(918\) 0 0
\(919\) − 1339.16i − 1.45719i −0.684943 0.728597i \(-0.740173\pi\)
0.684943 0.728597i \(-0.259827\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 456.932i 0.495051i
\(924\) 0 0
\(925\) −96.5248 −0.104351
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 636.302 0.684932 0.342466 0.939530i \(-0.388738\pi\)
0.342466 + 0.939530i \(0.388738\pi\)
\(930\) 0 0
\(931\) 1418.87i 1.52403i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 177.272i − 0.189596i
\(936\) 0 0
\(937\) −310.210 −0.331068 −0.165534 0.986204i \(-0.552935\pi\)
−0.165534 + 0.986204i \(0.552935\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1322.66 −1.40559 −0.702793 0.711394i \(-0.748064\pi\)
−0.702793 + 0.711394i \(0.748064\pi\)
\(942\) 0 0
\(943\) 1111.86i 1.17907i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 724.883i 0.765452i 0.923862 + 0.382726i \(0.125015\pi\)
−0.923862 + 0.382726i \(0.874985\pi\)
\(948\) 0 0
\(949\) −383.056 −0.403641
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 298.223 0.312931 0.156465 0.987683i \(-0.449990\pi\)
0.156465 + 0.987683i \(0.449990\pi\)
\(954\) 0 0
\(955\) − 518.695i − 0.543136i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 237.528i 0.247683i
\(960\) 0 0
\(961\) −227.328 −0.236554
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −376.525 −0.390181
\(966\) 0 0
\(967\) 249.236i 0.257742i 0.991661 + 0.128871i \(0.0411352\pi\)
−0.991661 + 0.128871i \(0.958865\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 339.246i − 0.349378i −0.984624 0.174689i \(-0.944108\pi\)
0.984624 0.174689i \(-0.0558920\pi\)
\(972\) 0 0
\(973\) 8.17029 0.00839701
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 40.8854 0.0418479 0.0209240 0.999781i \(-0.493339\pi\)
0.0209240 + 0.999781i \(0.493339\pi\)
\(978\) 0 0
\(979\) 527.700i 0.539019i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.56423i 0.00566045i 0.999996 + 0.00283023i \(0.000900890\pi\)
−0.999996 + 0.00283023i \(0.999099\pi\)
\(984\) 0 0
\(985\) −69.5016 −0.0705600
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1200.34 1.21369
\(990\) 0 0
\(991\) − 1562.45i − 1.57664i −0.615267 0.788319i \(-0.710952\pi\)
0.615267 0.788319i \(-0.289048\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 276.774i 0.278165i
\(996\) 0 0
\(997\) −704.224 −0.706343 −0.353172 0.935559i \(-0.614897\pi\)
−0.353172 + 0.935559i \(0.614897\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.3.e.a.991.2 4
3.2 odd 2 160.3.b.b.31.3 yes 4
4.3 odd 2 inner 1440.3.e.a.991.1 4
8.3 odd 2 2880.3.e.h.2431.3 4
8.5 even 2 2880.3.e.h.2431.4 4
12.11 even 2 160.3.b.b.31.2 4
15.2 even 4 800.3.h.e.799.4 4
15.8 even 4 800.3.h.h.799.2 4
15.14 odd 2 800.3.b.g.351.2 4
24.5 odd 2 320.3.b.d.191.2 4
24.11 even 2 320.3.b.d.191.3 4
48.5 odd 4 1280.3.g.b.1151.4 4
48.11 even 4 1280.3.g.c.1151.2 4
48.29 odd 4 1280.3.g.c.1151.1 4
48.35 even 4 1280.3.g.b.1151.3 4
60.23 odd 4 800.3.h.e.799.3 4
60.47 odd 4 800.3.h.h.799.1 4
60.59 even 2 800.3.b.g.351.3 4
120.29 odd 2 1600.3.b.u.1151.3 4
120.53 even 4 1600.3.h.f.1599.3 4
120.59 even 2 1600.3.b.u.1151.2 4
120.77 even 4 1600.3.h.k.1599.1 4
120.83 odd 4 1600.3.h.k.1599.2 4
120.107 odd 4 1600.3.h.f.1599.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.3.b.b.31.2 4 12.11 even 2
160.3.b.b.31.3 yes 4 3.2 odd 2
320.3.b.d.191.2 4 24.5 odd 2
320.3.b.d.191.3 4 24.11 even 2
800.3.b.g.351.2 4 15.14 odd 2
800.3.b.g.351.3 4 60.59 even 2
800.3.h.e.799.3 4 60.23 odd 4
800.3.h.e.799.4 4 15.2 even 4
800.3.h.h.799.1 4 60.47 odd 4
800.3.h.h.799.2 4 15.8 even 4
1280.3.g.b.1151.3 4 48.35 even 4
1280.3.g.b.1151.4 4 48.5 odd 4
1280.3.g.c.1151.1 4 48.29 odd 4
1280.3.g.c.1151.2 4 48.11 even 4
1440.3.e.a.991.1 4 4.3 odd 2 inner
1440.3.e.a.991.2 4 1.1 even 1 trivial
1600.3.b.u.1151.2 4 120.59 even 2
1600.3.b.u.1151.3 4 120.29 odd 2
1600.3.h.f.1599.3 4 120.53 even 4
1600.3.h.f.1599.4 4 120.107 odd 4
1600.3.h.k.1599.1 4 120.77 even 4
1600.3.h.k.1599.2 4 120.83 odd 4
2880.3.e.h.2431.3 4 8.3 odd 2
2880.3.e.h.2431.4 4 8.5 even 2