Properties

Label 1440.4.a
Level 14401440
Weight 44
Character orbit 1440.a
Rep. character χ1440(1,)\chi_{1440}(1,\cdot)
Character field Q\Q
Dimension 6060
Newform subspaces 3737
Sturm bound 11521152
Trace bound 1313

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1440=25325 1440 = 2^{5} \cdot 3^{2} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1440.a (trivial)
Character field: Q\Q
Newform subspaces: 37 37
Sturm bound: 11521152
Trace bound: 1313
Distinguishing TpT_p: 77, 1111, 1717

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(1440))M_{4}(\Gamma_0(1440)).

Total New Old
Modular forms 896 60 836
Cusp forms 832 60 772
Eisenstein series 64 0 64

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

223355FrickeDim
++++++++77
++++--55
++-++-99
++--++1010
-++++-55
-++-++77
--++++99
----88
Plus space++3333
Minus space-2727

Trace form

60q144q13152q17+1500q2556q29+1008q37416q41+2116q49784q53+1760q61+280q651224q73+1680q773656q89+680q97+O(q100) 60 q - 144 q^{13} - 152 q^{17} + 1500 q^{25} - 56 q^{29} + 1008 q^{37} - 416 q^{41} + 2116 q^{49} - 784 q^{53} + 1760 q^{61} + 280 q^{65} - 1224 q^{73} + 1680 q^{77} - 3656 q^{89} + 680 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(1440))S_{4}^{\mathrm{new}}(\Gamma_0(1440)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 5
1440.4.a.a 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.c 00 00 5-5 32-32 ++ - ++ SU(2)\mathrm{SU}(2) q5q525q7+26q116q13+q-5q^{5}-2^{5}q^{7}+2^{6}q^{11}-6q^{13}+\cdots
1440.4.a.b 1440.a 1.a 11 84.96384.963 Q\Q None 1440.4.a.b 00 00 5-5 30-30 ++ ++ ++ SU(2)\mathrm{SU}(2) q5q530q750q1188q13+q-5q^{5}-30q^{7}-50q^{11}-88q^{13}+\cdots
1440.4.a.c 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.f 00 00 5-5 16-16 ++ - ++ SU(2)\mathrm{SU}(2) q5q524q7+24q1114q13+q-5q^{5}-2^{4}q^{7}+24q^{11}-14q^{13}+\cdots
1440.4.a.d 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.e 00 00 5-5 12-12 - - ++ SU(2)\mathrm{SU}(2) q5q512q7+24q11+38q13+q-5q^{5}-12q^{7}+24q^{11}+38q^{13}+\cdots
1440.4.a.e 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.d 00 00 5-5 4-4 - - ++ SU(2)\mathrm{SU}(2) q5q54q740q1190q13+q-5q^{5}-4q^{7}-40q^{11}-90q^{13}+\cdots
1440.4.a.f 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.d 00 00 5-5 44 ++ - ++ SU(2)\mathrm{SU}(2) q5q5+4q7+40q1190q13+q-5q^{5}+4q^{7}+40q^{11}-90q^{13}+\cdots
1440.4.a.g 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.e 00 00 5-5 1212 ++ - ++ SU(2)\mathrm{SU}(2) q5q5+12q724q11+38q13+q-5q^{5}+12q^{7}-24q^{11}+38q^{13}+\cdots
1440.4.a.h 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.f 00 00 5-5 1616 ++ - ++ SU(2)\mathrm{SU}(2) q5q5+24q724q1114q13+q-5q^{5}+2^{4}q^{7}-24q^{11}-14q^{13}+\cdots
1440.4.a.i 1440.a 1.a 11 84.96384.963 Q\Q None 1440.4.a.b 00 00 5-5 3030 ++ ++ ++ SU(2)\mathrm{SU}(2) q5q5+30q7+50q1188q13+q-5q^{5}+30q^{7}+50q^{11}-88q^{13}+\cdots
1440.4.a.j 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.c 00 00 5-5 3232 - - ++ SU(2)\mathrm{SU}(2) q5q5+25q726q116q13+q-5q^{5}+2^{5}q^{7}-2^{6}q^{11}-6q^{13}+\cdots
1440.4.a.k 1440.a 1.a 11 84.96384.963 Q\Q None 1440.4.a.b 00 00 55 30-30 - ++ - SU(2)\mathrm{SU}(2) q+5q530q7+50q1188q13+q+5q^{5}-30q^{7}+50q^{11}-88q^{13}+\cdots
1440.4.a.l 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.a 00 00 55 12-12 - - - SU(2)\mathrm{SU}(2) q+5q512q720q1158q13+q+5q^{5}-12q^{7}-20q^{11}-58q^{13}+\cdots
1440.4.a.m 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.b 00 00 55 8-8 - - - SU(2)\mathrm{SU}(2) q+5q58q74q116q13+2q17+q+5q^{5}-8q^{7}-4q^{11}-6q^{13}+2q^{17}+\cdots
1440.4.a.n 1440.a 1.a 11 84.96384.963 Q\Q None 160.4.a.a 00 00 55 6-6 ++ - - SU(2)\mathrm{SU}(2) q+5q56q7+60q11+50q13+q+5q^{5}-6q^{7}+60q^{11}+50q^{13}+\cdots
1440.4.a.o 1440.a 1.a 11 84.96384.963 Q\Q None 160.4.a.a 00 00 55 66 - - - SU(2)\mathrm{SU}(2) q+5q5+6q760q11+50q13+q+5q^{5}+6q^{7}-60q^{11}+50q^{13}+\cdots
1440.4.a.p 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.b 00 00 55 88 ++ - - SU(2)\mathrm{SU}(2) q+5q5+8q7+4q116q13+2q17+q+5q^{5}+8q^{7}+4q^{11}-6q^{13}+2q^{17}+\cdots
1440.4.a.q 1440.a 1.a 11 84.96384.963 Q\Q None 480.4.a.a 00 00 55 1212 - - - SU(2)\mathrm{SU}(2) q+5q5+12q7+20q1158q13+q+5q^{5}+12q^{7}+20q^{11}-58q^{13}+\cdots
1440.4.a.r 1440.a 1.a 11 84.96384.963 Q\Q None 1440.4.a.b 00 00 55 3030 - ++ - SU(2)\mathrm{SU}(2) q+5q5+30q750q1188q13+q+5q^{5}+30q^{7}-50q^{11}-88q^{13}+\cdots
1440.4.a.s 1440.a 1.a 22 84.96384.963 Q(89)\Q(\sqrt{89}) None 480.4.a.o 00 00 10-10 12-12 - - ++ SU(2)\mathrm{SU}(2) q5q5+(6β)q7+(122β)q11+q-5q^{5}+(-6-\beta )q^{7}+(12-2\beta )q^{11}+\cdots
1440.4.a.t 1440.a 1.a 22 84.96384.963 Q(6)\Q(\sqrt{6}) None 160.4.a.c 00 00 10-10 8-8 - - ++ SU(2)\mathrm{SU}(2) q5q5+(4+5β)q7+(25+6β)q11+q-5q^{5}+(-4+5\beta )q^{7}+(2^{5}+6\beta )q^{11}+\cdots
1440.4.a.u 1440.a 1.a 22 84.96384.963 Q(65)\Q(\sqrt{65}) None 1440.4.a.u 00 00 10-10 00 - ++ ++ SU(2)\mathrm{SU}(2) q5q5βq7+βq118q13+26q17+q-5q^{5}-\beta q^{7}+\beta q^{11}-8q^{13}+26q^{17}+\cdots
1440.4.a.v 1440.a 1.a 22 84.96384.963 Q(10)\Q(\sqrt{10}) None 160.4.a.f 00 00 10-10 00 ++ - ++ SU(2)\mathrm{SU}(2) q5q5+3βq7+2βq11+38q13+q-5q^{5}+3\beta q^{7}+2\beta q^{11}+38q^{13}+\cdots
1440.4.a.w 1440.a 1.a 22 84.96384.963 Q(85)\Q(\sqrt{85}) None 1440.4.a.w 00 00 10-10 00 ++ ++ ++ SU(2)\mathrm{SU}(2) q5q5βq7+3βq11+52q13+q-5q^{5}-\beta q^{7}+3\beta q^{11}+52q^{13}+\cdots
1440.4.a.x 1440.a 1.a 22 84.96384.963 Q(6)\Q(\sqrt{6}) None 160.4.a.c 00 00 10-10 88 ++ - ++ SU(2)\mathrm{SU}(2) q5q5+(4+5β)q7+(25+6β)q11+q-5q^{5}+(4+5\beta )q^{7}+(-2^{5}+6\beta )q^{11}+\cdots
1440.4.a.y 1440.a 1.a 22 84.96384.963 Q(89)\Q(\sqrt{89}) None 480.4.a.o 00 00 10-10 1212 - - ++ SU(2)\mathrm{SU}(2) q5q5+(6+β)q7+(12+2β)q11+q-5q^{5}+(6+\beta )q^{7}+(-12+2\beta )q^{11}+\cdots
1440.4.a.z 1440.a 1.a 22 84.96384.963 Q(41)\Q(\sqrt{41}) None 480.4.a.m 00 00 1010 12-12 ++ - - SU(2)\mathrm{SU}(2) q+5q5+(6β)q7+(124β)q11+q+5q^{5}+(-6-\beta )q^{7}+(-12-4\beta )q^{11}+\cdots
1440.4.a.ba 1440.a 1.a 22 84.96384.963 Q(201)\Q(\sqrt{201}) None 480.4.a.n 00 00 1010 4-4 - - - SU(2)\mathrm{SU}(2) q+5q5+(2β)q7+20q11+(12+)q13+q+5q^{5}+(-2-\beta )q^{7}+20q^{11}+(-12+\cdots)q^{13}+\cdots
1440.4.a.bb 1440.a 1.a 22 84.96384.963 Q(5)\Q(\sqrt{5}) None 160.4.a.d 00 00 1010 00 ++ - - SU(2)\mathrm{SU}(2) q+5q57βq7+2βq1162q13+q+5q^{5}-7\beta q^{7}+2\beta q^{11}-62q^{13}+\cdots
1440.4.a.bc 1440.a 1.a 22 84.96384.963 Q(65)\Q(\sqrt{65}) None 1440.4.a.u 00 00 1010 00 ++ ++ - SU(2)\mathrm{SU}(2) q+5q5βq7βq118q1326q17+q+5q^{5}-\beta q^{7}-\beta q^{11}-8q^{13}-26q^{17}+\cdots
1440.4.a.bd 1440.a 1.a 22 84.96384.963 Q(13)\Q(\sqrt{13}) None 160.4.a.e 00 00 1010 00 - - - SU(2)\mathrm{SU}(2) q+5q5βq7+6βq11+34q13+q+5q^{5}-\beta q^{7}+6\beta q^{11}+34q^{13}+\cdots
1440.4.a.be 1440.a 1.a 22 84.96384.963 Q(85)\Q(\sqrt{85}) None 1440.4.a.w 00 00 1010 00 - ++ - SU(2)\mathrm{SU}(2) q+5q5βq73βq11+52q13+q+5q^{5}-\beta q^{7}-3\beta q^{11}+52q^{13}+\cdots
1440.4.a.bf 1440.a 1.a 22 84.96384.963 Q(201)\Q(\sqrt{201}) None 480.4.a.n 00 00 1010 44 ++ - - SU(2)\mathrm{SU}(2) q+5q5+(2+β)q720q11+(12+)q13+q+5q^{5}+(2+\beta )q^{7}-20q^{11}+(-12+\cdots)q^{13}+\cdots
1440.4.a.bg 1440.a 1.a 22 84.96384.963 Q(41)\Q(\sqrt{41}) None 480.4.a.m 00 00 1010 1212 ++ - - SU(2)\mathrm{SU}(2) q+5q5+(6+β)q7+(12+4β)q11+q+5q^{5}+(6+\beta )q^{7}+(12+4\beta )q^{11}+\cdots
1440.4.a.bh 1440.a 1.a 33 84.96384.963 3.3.16773.1 None 1440.4.a.bh 00 00 15-15 14-14 - ++ ++ SU(2)\mathrm{SU}(2) q5q5+(5+β1)q7+(7+2β1+β2)q11+q-5q^{5}+(-5+\beta _{1})q^{7}+(7+2\beta _{1}+\beta _{2})q^{11}+\cdots
1440.4.a.bi 1440.a 1.a 33 84.96384.963 3.3.16773.1 None 1440.4.a.bh 00 00 15-15 1414 ++ ++ ++ SU(2)\mathrm{SU}(2) q5q5+(5β1)q7+(72β1β2)q11+q-5q^{5}+(5-\beta _{1})q^{7}+(-7-2\beta _{1}-\beta _{2})q^{11}+\cdots
1440.4.a.bj 1440.a 1.a 33 84.96384.963 3.3.16773.1 None 1440.4.a.bh 00 00 1515 14-14 ++ ++ - SU(2)\mathrm{SU}(2) q+5q5+(5+β1)q7+(72β1+)q11+q+5q^{5}+(-5+\beta _{1})q^{7}+(-7-2\beta _{1}+\cdots)q^{11}+\cdots
1440.4.a.bk 1440.a 1.a 33 84.96384.963 3.3.16773.1 None 1440.4.a.bh 00 00 1515 1414 - ++ - SU(2)\mathrm{SU}(2) q+5q5+(5β1)q7+(7+2β1+β2)q11+q+5q^{5}+(5-\beta _{1})q^{7}+(7+2\beta _{1}+\beta _{2})q^{11}+\cdots

Decomposition of S4old(Γ0(1440))S_{4}^{\mathrm{old}}(\Gamma_0(1440)) into lower level spaces

S4old(Γ0(1440)) S_{4}^{\mathrm{old}}(\Gamma_0(1440)) \simeq S4new(Γ0(5))S_{4}^{\mathrm{new}}(\Gamma_0(5))18^{\oplus 18}\oplusS4new(Γ0(6))S_{4}^{\mathrm{new}}(\Gamma_0(6))20^{\oplus 20}\oplusS4new(Γ0(8))S_{4}^{\mathrm{new}}(\Gamma_0(8))18^{\oplus 18}\oplusS4new(Γ0(9))S_{4}^{\mathrm{new}}(\Gamma_0(9))12^{\oplus 12}\oplusS4new(Γ0(10))S_{4}^{\mathrm{new}}(\Gamma_0(10))15^{\oplus 15}\oplusS4new(Γ0(12))S_{4}^{\mathrm{new}}(\Gamma_0(12))16^{\oplus 16}\oplusS4new(Γ0(15))S_{4}^{\mathrm{new}}(\Gamma_0(15))12^{\oplus 12}\oplusS4new(Γ0(16))S_{4}^{\mathrm{new}}(\Gamma_0(16))12^{\oplus 12}\oplusS4new(Γ0(18))S_{4}^{\mathrm{new}}(\Gamma_0(18))10^{\oplus 10}\oplusS4new(Γ0(20))S_{4}^{\mathrm{new}}(\Gamma_0(20))12^{\oplus 12}\oplusS4new(Γ0(24))S_{4}^{\mathrm{new}}(\Gamma_0(24))12^{\oplus 12}\oplusS4new(Γ0(30))S_{4}^{\mathrm{new}}(\Gamma_0(30))10^{\oplus 10}\oplusS4new(Γ0(32))S_{4}^{\mathrm{new}}(\Gamma_0(32))6^{\oplus 6}\oplusS4new(Γ0(36))S_{4}^{\mathrm{new}}(\Gamma_0(36))8^{\oplus 8}\oplusS4new(Γ0(40))S_{4}^{\mathrm{new}}(\Gamma_0(40))9^{\oplus 9}\oplusS4new(Γ0(45))S_{4}^{\mathrm{new}}(\Gamma_0(45))6^{\oplus 6}\oplusS4new(Γ0(48))S_{4}^{\mathrm{new}}(\Gamma_0(48))8^{\oplus 8}\oplusS4new(Γ0(60))S_{4}^{\mathrm{new}}(\Gamma_0(60))8^{\oplus 8}\oplusS4new(Γ0(72))S_{4}^{\mathrm{new}}(\Gamma_0(72))6^{\oplus 6}\oplusS4new(Γ0(80))S_{4}^{\mathrm{new}}(\Gamma_0(80))6^{\oplus 6}\oplusS4new(Γ0(90))S_{4}^{\mathrm{new}}(\Gamma_0(90))5^{\oplus 5}\oplusS4new(Γ0(96))S_{4}^{\mathrm{new}}(\Gamma_0(96))4^{\oplus 4}\oplusS4new(Γ0(120))S_{4}^{\mathrm{new}}(\Gamma_0(120))6^{\oplus 6}\oplusS4new(Γ0(144))S_{4}^{\mathrm{new}}(\Gamma_0(144))4^{\oplus 4}\oplusS4new(Γ0(160))S_{4}^{\mathrm{new}}(\Gamma_0(160))3^{\oplus 3}\oplusS4new(Γ0(180))S_{4}^{\mathrm{new}}(\Gamma_0(180))4^{\oplus 4}\oplusS4new(Γ0(240))S_{4}^{\mathrm{new}}(\Gamma_0(240))4^{\oplus 4}\oplusS4new(Γ0(288))S_{4}^{\mathrm{new}}(\Gamma_0(288))2^{\oplus 2}\oplusS4new(Γ0(360))S_{4}^{\mathrm{new}}(\Gamma_0(360))3^{\oplus 3}\oplusS4new(Γ0(480))S_{4}^{\mathrm{new}}(\Gamma_0(480))2^{\oplus 2}\oplusS4new(Γ0(720))S_{4}^{\mathrm{new}}(\Gamma_0(720))2^{\oplus 2}