Defining parameters
Level: | \( N \) | = | \( 1449 = 3^{2} \cdot 7 \cdot 23 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 40 \) | ||
Sturm bound: | \(608256\) | ||
Trace bound: | \(22\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1449))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 230208 | 173344 | 56864 |
Cusp forms | 225984 | 171452 | 54532 |
Eisenstein series | 4224 | 1892 | 2332 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1449))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1449))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(1449)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(161))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(483))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1449))\)\(^{\oplus 1}\)