Properties

Label 1449.4
Level 1449
Weight 4
Dimension 171452
Nonzero newspaces 40
Sturm bound 608256
Trace bound 22

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1449 = 3^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(608256\)
Trace bound: \(22\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1449))\).

Total New Old
Modular forms 230208 173344 56864
Cusp forms 225984 171452 54532
Eisenstein series 4224 1892 2332

Trace form

\( 171452 q - 126 q^{2} - 164 q^{3} - 166 q^{4} - 198 q^{5} - 116 q^{6} - 169 q^{7} + 24 q^{8} + 28 q^{9} - 240 q^{10} - 378 q^{11} - 872 q^{12} - 644 q^{13} - 1371 q^{14} - 524 q^{15} + 930 q^{16} + 1274 q^{17}+ \cdots - 7172 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1449))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1449.4.a \(\chi_{1449}(1, \cdot)\) 1449.4.a.a 1 1
1449.4.a.b 1
1449.4.a.c 3
1449.4.a.d 4
1449.4.a.e 5
1449.4.a.f 7
1449.4.a.g 7
1449.4.a.h 7
1449.4.a.i 8
1449.4.a.j 9
1449.4.a.k 9
1449.4.a.l 9
1449.4.a.m 9
1449.4.a.n 9
1449.4.a.o 12
1449.4.a.p 16
1449.4.a.q 16
1449.4.a.r 17
1449.4.a.s 17
1449.4.d \(\chi_{1449}(944, \cdot)\) n/a 176 1
1449.4.e \(\chi_{1449}(827, \cdot)\) n/a 144 1
1449.4.h \(\chi_{1449}(1126, \cdot)\) n/a 238 1
1449.4.i \(\chi_{1449}(415, \cdot)\) n/a 440 2
1449.4.j \(\chi_{1449}(484, \cdot)\) n/a 792 2
1449.4.k \(\chi_{1449}(760, \cdot)\) n/a 1056 2
1449.4.l \(\chi_{1449}(277, \cdot)\) n/a 1056 2
1449.4.m \(\chi_{1449}(137, \cdot)\) n/a 1144 2
1449.4.n \(\chi_{1449}(668, \cdot)\) n/a 1056 2
1449.4.s \(\chi_{1449}(712, \cdot)\) n/a 476 2
1449.4.t \(\chi_{1449}(160, \cdot)\) n/a 1144 2
1449.4.y \(\chi_{1449}(850, \cdot)\) n/a 1144 2
1449.4.bb \(\chi_{1449}(344, \cdot)\) n/a 864 2
1449.4.bc \(\chi_{1449}(461, \cdot)\) n/a 1056 2
1449.4.bd \(\chi_{1449}(620, \cdot)\) n/a 384 2
1449.4.be \(\chi_{1449}(530, \cdot)\) n/a 352 2
1449.4.bj \(\chi_{1449}(47, \cdot)\) n/a 1056 2
1449.4.bk \(\chi_{1449}(758, \cdot)\) n/a 1144 2
1449.4.bl \(\chi_{1449}(229, \cdot)\) n/a 1144 2
1449.4.bo \(\chi_{1449}(64, \cdot)\) n/a 1800 10
1449.4.bp \(\chi_{1449}(181, \cdot)\) n/a 2380 10
1449.4.bs \(\chi_{1449}(134, \cdot)\) n/a 1440 10
1449.4.bt \(\chi_{1449}(62, \cdot)\) n/a 1920 10
1449.4.bw \(\chi_{1449}(25, \cdot)\) n/a 11440 20
1449.4.bx \(\chi_{1449}(4, \cdot)\) n/a 11440 20
1449.4.by \(\chi_{1449}(85, \cdot)\) n/a 8640 20
1449.4.bz \(\chi_{1449}(100, \cdot)\) n/a 4760 20
1449.4.cc \(\chi_{1449}(40, \cdot)\) n/a 11440 20
1449.4.cd \(\chi_{1449}(65, \cdot)\) n/a 11440 20
1449.4.ce \(\chi_{1449}(59, \cdot)\) n/a 11440 20
1449.4.cj \(\chi_{1449}(26, \cdot)\) n/a 3840 20
1449.4.ck \(\chi_{1449}(44, \cdot)\) n/a 3840 20
1449.4.cl \(\chi_{1449}(41, \cdot)\) n/a 11440 20
1449.4.cm \(\chi_{1449}(113, \cdot)\) n/a 8640 20
1449.4.cp \(\chi_{1449}(61, \cdot)\) n/a 11440 20
1449.4.cu \(\chi_{1449}(34, \cdot)\) n/a 11440 20
1449.4.cv \(\chi_{1449}(10, \cdot)\) n/a 4760 20
1449.4.da \(\chi_{1449}(101, \cdot)\) n/a 11440 20
1449.4.db \(\chi_{1449}(11, \cdot)\) n/a 11440 20

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1449))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1449)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(161))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(483))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1449))\)\(^{\oplus 1}\)