Properties

Label 147.2
Level 147
Weight 2
Dimension 517
Nonzero newspaces 8
Newform subspaces 21
Sturm bound 3136
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 21 \)
Sturm bound: \(3136\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(147))\).

Total New Old
Modular forms 904 613 291
Cusp forms 665 517 148
Eisenstein series 239 96 143

Trace form

\( 517 q + 3 q^{2} - 16 q^{3} - 39 q^{4} - 6 q^{5} - 30 q^{6} - 44 q^{7} - 21 q^{8} - 28 q^{9} - 72 q^{10} - 24 q^{11} - 34 q^{12} - 56 q^{13} - 24 q^{14} - 33 q^{15} - 71 q^{16} - 6 q^{17} - 18 q^{18} - 50 q^{19}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(147))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
147.2.a \(\chi_{147}(1, \cdot)\) 147.2.a.a 1 1
147.2.a.b 1
147.2.a.c 1
147.2.a.d 2
147.2.a.e 2
147.2.c \(\chi_{147}(146, \cdot)\) 147.2.c.a 2 1
147.2.c.b 8
147.2.e \(\chi_{147}(67, \cdot)\) 147.2.e.a 2 2
147.2.e.b 2
147.2.e.c 2
147.2.e.d 4
147.2.e.e 4
147.2.g \(\chi_{147}(68, \cdot)\) 147.2.g.a 2 2
147.2.g.b 16
147.2.i \(\chi_{147}(22, \cdot)\) 147.2.i.a 24 6
147.2.i.b 36
147.2.k \(\chi_{147}(20, \cdot)\) 147.2.k.a 96 6
147.2.m \(\chi_{147}(4, \cdot)\) 147.2.m.a 48 12
147.2.m.b 60
147.2.o \(\chi_{147}(5, \cdot)\) 147.2.o.a 12 12
147.2.o.b 192

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(147))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(147)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 1}\)