Properties

Label 147.2
Level 147
Weight 2
Dimension 517
Nonzero newspaces 8
Newform subspaces 21
Sturm bound 3136
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 147=372 147 = 3 \cdot 7^{2}
Weight: k k = 2 2
Nonzero newspaces: 8 8
Newform subspaces: 21 21
Sturm bound: 31363136
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(147))M_{2}(\Gamma_1(147)).

Total New Old
Modular forms 904 613 291
Cusp forms 665 517 148
Eisenstein series 239 96 143

Trace form

517q+3q216q339q46q530q644q721q828q972q1024q1134q1256q1324q1433q1571q166q1718q1850q19++96q99+O(q100) 517 q + 3 q^{2} - 16 q^{3} - 39 q^{4} - 6 q^{5} - 30 q^{6} - 44 q^{7} - 21 q^{8} - 28 q^{9} - 72 q^{10} - 24 q^{11} - 34 q^{12} - 56 q^{13} - 24 q^{14} - 33 q^{15} - 71 q^{16} - 6 q^{17} - 18 q^{18} - 50 q^{19}+ \cdots + 96 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(147))S_{2}^{\mathrm{new}}(\Gamma_1(147))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
147.2.a χ147(1,)\chi_{147}(1, \cdot) 147.2.a.a 1 1
147.2.a.b 1
147.2.a.c 1
147.2.a.d 2
147.2.a.e 2
147.2.c χ147(146,)\chi_{147}(146, \cdot) 147.2.c.a 2 1
147.2.c.b 8
147.2.e χ147(67,)\chi_{147}(67, \cdot) 147.2.e.a 2 2
147.2.e.b 2
147.2.e.c 2
147.2.e.d 4
147.2.e.e 4
147.2.g χ147(68,)\chi_{147}(68, \cdot) 147.2.g.a 2 2
147.2.g.b 16
147.2.i χ147(22,)\chi_{147}(22, \cdot) 147.2.i.a 24 6
147.2.i.b 36
147.2.k χ147(20,)\chi_{147}(20, \cdot) 147.2.k.a 96 6
147.2.m χ147(4,)\chi_{147}(4, \cdot) 147.2.m.a 48 12
147.2.m.b 60
147.2.o χ147(5,)\chi_{147}(5, \cdot) 147.2.o.a 12 12
147.2.o.b 192

Decomposition of S2old(Γ1(147))S_{2}^{\mathrm{old}}(\Gamma_1(147)) into lower level spaces

S2old(Γ1(147)) S_{2}^{\mathrm{old}}(\Gamma_1(147)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))6^{\oplus 6}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))3^{\oplus 3}\oplusS2new(Γ1(7))S_{2}^{\mathrm{new}}(\Gamma_1(7))4^{\oplus 4}\oplusS2new(Γ1(21))S_{2}^{\mathrm{new}}(\Gamma_1(21))2^{\oplus 2}\oplusS2new(Γ1(49))S_{2}^{\mathrm{new}}(\Gamma_1(49))2^{\oplus 2}