Defining parameters
Level: | \( N \) | = | \( 147 = 3 \cdot 7^{2} \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 8 \) | ||
Newform subspaces: | \( 30 \) | ||
Sturm bound: | \(4704\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(147))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1688 | 1178 | 510 |
Cusp forms | 1448 | 1080 | 368 |
Eisenstein series | 240 | 98 | 142 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(147))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(147))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(147)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 1}\)