Properties

Label 147.4.k
Level $147$
Weight $4$
Character orbit 147.k
Rep. character $\chi_{147}(20,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $324$
Newform subspaces $2$
Sturm bound $74$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.k (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 147 \)
Character field: \(\Q(\zeta_{14})\)
Newform subspaces: \( 2 \)
Sturm bound: \(74\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(147, [\chi])\).

Total New Old
Modular forms 348 348 0
Cusp forms 324 324 0
Eisenstein series 24 24 0

Trace form

\( 324 q - 7 q^{3} + 198 q^{4} - 35 q^{6} - 22 q^{7} + 65 q^{9} - 14 q^{10} + 378 q^{12} - 14 q^{13} + 133 q^{15} - 810 q^{16} - 210 q^{18} - 85 q^{21} + 126 q^{22} - 7 q^{24} - 908 q^{25} + 35 q^{27} + 272 q^{28}+ \cdots - 11018 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(147, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
147.4.k.a 147.k 147.k $12$ $8.673$ \(\Q(\zeta_{21})\) \(\Q(\sqrt{-3}) \) 147.4.k.a \(0\) \(0\) \(0\) \(20\) $\mathrm{U}(1)[D_{14}]$ \(q+\beta_{11} q^{3}-8\beta_{3} q^{4}+(3\beta_{10}+10\beta_{5})q^{7}+\cdots\)
147.4.k.b 147.k 147.k $312$ $8.673$ None 147.4.k.b \(0\) \(-7\) \(0\) \(-42\) $\mathrm{SU}(2)[C_{14}]$