Defining parameters
Level: | \( N \) | \(=\) | \( 147 = 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 147.k (of order \(14\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 147 \) |
Character field: | \(\Q(\zeta_{14})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(74\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(147, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 348 | 348 | 0 |
Cusp forms | 324 | 324 | 0 |
Eisenstein series | 24 | 24 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(147, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
147.4.k.a | $12$ | $8.673$ | \(\Q(\zeta_{21})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(20\) | \(q+\beta_{11} q^{3}-8\beta_{3} q^{4}+(3\beta_{10}+10\beta_{5})q^{7}+\cdots\) |
147.4.k.b | $312$ | $8.673$ | None | \(0\) | \(-7\) | \(0\) | \(-42\) |