Defining parameters
Level: | \( N \) | = | \( 147 = 3 \cdot 7^{2} \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(12544\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(147))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5608 | 3997 | 1611 |
Cusp forms | 5368 | 3901 | 1467 |
Eisenstein series | 240 | 96 | 144 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(147))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
147.8.a | \(\chi_{147}(1, \cdot)\) | 147.8.a.a | 1 | 1 |
147.8.a.b | 1 | |||
147.8.a.c | 2 | |||
147.8.a.d | 2 | |||
147.8.a.e | 3 | |||
147.8.a.f | 4 | |||
147.8.a.g | 4 | |||
147.8.a.h | 4 | |||
147.8.a.i | 4 | |||
147.8.a.j | 5 | |||
147.8.a.k | 5 | |||
147.8.a.l | 6 | |||
147.8.a.m | 6 | |||
147.8.c | \(\chi_{147}(146, \cdot)\) | 147.8.c.a | 2 | 1 |
147.8.c.b | 32 | |||
147.8.c.c | 56 | |||
147.8.e | \(\chi_{147}(67, \cdot)\) | 147.8.e.a | 2 | 2 |
147.8.e.b | 2 | |||
147.8.e.c | 2 | |||
147.8.e.d | 2 | |||
147.8.e.e | 4 | |||
147.8.e.f | 4 | |||
147.8.e.g | 4 | |||
147.8.e.h | 4 | |||
147.8.e.i | 6 | |||
147.8.e.j | 6 | |||
147.8.e.k | 8 | |||
147.8.e.l | 8 | |||
147.8.e.m | 8 | |||
147.8.e.n | 10 | |||
147.8.e.o | 12 | |||
147.8.e.p | 12 | |||
147.8.g | \(\chi_{147}(68, \cdot)\) | n/a | 178 | 2 |
147.8.i | \(\chi_{147}(22, \cdot)\) | n/a | 396 | 6 |
147.8.k | \(\chi_{147}(20, \cdot)\) | n/a | 768 | 6 |
147.8.m | \(\chi_{147}(4, \cdot)\) | n/a | 780 | 12 |
147.8.o | \(\chi_{147}(5, \cdot)\) | n/a | 1548 | 12 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(147))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(147)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 1}\)