Properties

Label 147.8
Level 147
Weight 8
Dimension 3901
Nonzero newspaces 8
Sturm bound 12544
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(12544\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(147))\).

Total New Old
Modular forms 5608 3997 1611
Cusp forms 5368 3901 1467
Eisenstein series 240 96 144

Trace form

\( 3901 q + 6 q^{2} + 12 q^{3} - 1146 q^{4} + 378 q^{5} + 2409 q^{6} + 628 q^{7} - 8628 q^{8} + 3780 q^{9} - 34038 q^{10} + 4056 q^{11} + 44751 q^{12} + 11296 q^{13} + 39288 q^{14} - 42393 q^{15} - 188606 q^{16}+ \cdots - 158898672 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(147))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
147.8.a \(\chi_{147}(1, \cdot)\) 147.8.a.a 1 1
147.8.a.b 1
147.8.a.c 2
147.8.a.d 2
147.8.a.e 3
147.8.a.f 4
147.8.a.g 4
147.8.a.h 4
147.8.a.i 4
147.8.a.j 5
147.8.a.k 5
147.8.a.l 6
147.8.a.m 6
147.8.c \(\chi_{147}(146, \cdot)\) 147.8.c.a 2 1
147.8.c.b 32
147.8.c.c 56
147.8.e \(\chi_{147}(67, \cdot)\) 147.8.e.a 2 2
147.8.e.b 2
147.8.e.c 2
147.8.e.d 2
147.8.e.e 4
147.8.e.f 4
147.8.e.g 4
147.8.e.h 4
147.8.e.i 6
147.8.e.j 6
147.8.e.k 8
147.8.e.l 8
147.8.e.m 8
147.8.e.n 10
147.8.e.o 12
147.8.e.p 12
147.8.g \(\chi_{147}(68, \cdot)\) n/a 178 2
147.8.i \(\chi_{147}(22, \cdot)\) n/a 396 6
147.8.k \(\chi_{147}(20, \cdot)\) n/a 768 6
147.8.m \(\chi_{147}(4, \cdot)\) n/a 780 12
147.8.o \(\chi_{147}(5, \cdot)\) n/a 1548 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(147))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(147)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 1}\)