Defining parameters
Level: | \( N \) | \(=\) | \( 1472 = 2^{6} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1472.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1472, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 400 | 88 | 312 |
Cusp forms | 368 | 88 | 280 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1472, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1472.2.j.a | $2$ | $11.754$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+(i-1)q^{3}+4 i q^{7}+i q^{9}+(-4 i-4)q^{11}+\cdots\) |
1472.2.j.b | $4$ | $11.754$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(6\) | \(-4\) | \(0\) | \(q+(-\beta_{3}-\beta_{2}+1)q^{3}+(-\beta_{2}-1)q^{5}+\cdots\) |
1472.2.j.c | $12$ | $11.754$ | 12.0.\(\cdots\).1 | None | \(0\) | \(-2\) | \(-4\) | \(0\) | \(q+\beta _{1}q^{3}+(-1+\beta _{2}+\beta _{3}+\beta _{5}-\beta _{6}+\cdots)q^{5}+\cdots\) |
1472.2.j.d | $24$ | $11.754$ | None | \(0\) | \(4\) | \(4\) | \(0\) | ||
1472.2.j.e | $46$ | $11.754$ | None | \(0\) | \(-6\) | \(4\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1472, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1472, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(368, [\chi])\)\(^{\oplus 3}\)