Properties

Label 1472.2.j
Level $1472$
Weight $2$
Character orbit 1472.j
Rep. character $\chi_{1472}(369,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $88$
Newform subspaces $5$
Sturm bound $384$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1472 = 2^{6} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1472.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 5 \)
Sturm bound: \(384\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1472, [\chi])\).

Total New Old
Modular forms 400 88 312
Cusp forms 368 88 280
Eisenstein series 32 0 32

Trace form

\( 88 q - 12 q^{27} - 24 q^{31} - 24 q^{35} + 32 q^{43} + 40 q^{47} - 88 q^{49} + 40 q^{51} - 20 q^{59} - 16 q^{65} + 24 q^{67} + 24 q^{75} - 88 q^{81} - 40 q^{83} - 16 q^{91} - 24 q^{93} - 16 q^{95} - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1472, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1472.2.j.a 1472.j 16.e $2$ $11.754$ \(\Q(\sqrt{-1}) \) None 368.2.j.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{3}+4 i q^{7}+i q^{9}+(-4 i-4)q^{11}+\cdots\)
1472.2.j.b 1472.j 16.e $4$ $11.754$ \(\Q(\zeta_{12})\) None 368.2.j.b \(0\) \(6\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta_{3}-\beta_{2}+1)q^{3}+(-\beta_{2}-1)q^{5}+\cdots\)
1472.2.j.c 1472.j 16.e $12$ $11.754$ 12.0.\(\cdots\).1 None 368.2.j.c \(0\) \(-2\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{3}+(-1+\beta _{2}+\beta _{3}+\beta _{5}-\beta _{6}+\cdots)q^{5}+\cdots\)
1472.2.j.d 1472.j 16.e $24$ $11.754$ None 368.2.j.d \(0\) \(4\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$
1472.2.j.e 1472.j 16.e $46$ $11.754$ None 368.2.j.e \(0\) \(-6\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1472, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1472, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(368, [\chi])\)\(^{\oplus 3}\)