Properties

Label 15.4
Level 15
Weight 4
Dimension 14
Nonzero newspaces 3
Newform subspaces 4
Sturm bound 64
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 15=35 15 = 3 \cdot 5
Weight: k k = 4 4
Nonzero newspaces: 3 3
Newform subspaces: 4 4
Sturm bound: 6464
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ1(15))M_{4}(\Gamma_1(15)).

Total New Old
Modular forms 32 22 10
Cusp forms 16 14 2
Eisenstein series 16 8 8

Trace form

14q+4q26q324q4+6q520q736q818q996q1056q11+108q12+164q13+264q14+174q15+304q16+40q17204q18256q19++1008q99+O(q100) 14 q + 4 q^{2} - 6 q^{3} - 24 q^{4} + 6 q^{5} - 20 q^{7} - 36 q^{8} - 18 q^{9} - 96 q^{10} - 56 q^{11} + 108 q^{12} + 164 q^{13} + 264 q^{14} + 174 q^{15} + 304 q^{16} + 40 q^{17} - 204 q^{18} - 256 q^{19}+ \cdots + 1008 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ1(15))S_{4}^{\mathrm{new}}(\Gamma_1(15))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
15.4.a χ15(1,)\chi_{15}(1, \cdot) 15.4.a.a 1 1
15.4.a.b 1
15.4.b χ15(4,)\chi_{15}(4, \cdot) 15.4.b.a 4 1
15.4.e χ15(2,)\chi_{15}(2, \cdot) 15.4.e.a 8 2

Decomposition of S4old(Γ1(15))S_{4}^{\mathrm{old}}(\Gamma_1(15)) into lower level spaces

S4old(Γ1(15)) S_{4}^{\mathrm{old}}(\Gamma_1(15)) \cong S4new(Γ1(1))S_{4}^{\mathrm{new}}(\Gamma_1(1))4^{\oplus 4}\oplusS4new(Γ1(3))S_{4}^{\mathrm{new}}(\Gamma_1(3))2^{\oplus 2}\oplusS4new(Γ1(5))S_{4}^{\mathrm{new}}(\Gamma_1(5))2^{\oplus 2}