Properties

Label 150.10.c
Level 150150
Weight 1010
Character orbit 150.c
Rep. character χ150(49,)\chi_{150}(49,\cdot)
Character field Q\Q
Dimension 2626
Newform subspaces 1111
Sturm bound 300300
Trace bound 1111

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 150.c (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q\Q
Newform subspaces: 11 11
Sturm bound: 300300
Trace bound: 1111
Distinguishing TpT_p: 77

Dimensions

The following table gives the dimensions of various subspaces of M10(150,[χ])M_{10}(150, [\chi]).

Total New Old
Modular forms 282 26 256
Cusp forms 258 26 232
Eisenstein series 24 0 24

Trace form

26q6656q42592q6170586q9143976q11129152q14+1703936q16+462596q19+37260q21+663552q245139520q2620580516q2910091204q31+19286208q34++944626536q99+O(q100) 26 q - 6656 q^{4} - 2592 q^{6} - 170586 q^{9} - 143976 q^{11} - 129152 q^{14} + 1703936 q^{16} + 462596 q^{19} + 37260 q^{21} + 663552 q^{24} - 5139520 q^{26} - 20580516 q^{29} - 10091204 q^{31} + 19286208 q^{34}+ \cdots + 944626536 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(150,[χ])S_{10}^{\mathrm{new}}(150, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
150.10.c.a 150.c 5.b 22 77.25577.255 Q(1)\Q(\sqrt{-1}) None 150.10.a.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+16iq2+81iq3256q41296q6+q+16 i q^{2}+81 i q^{3}-256 q^{4}-1296 q^{6}+\cdots
150.10.c.b 150.c 5.b 22 77.25577.255 Q(1)\Q(\sqrt{-1}) None 30.10.a.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q16iq281iq3256q41296q6+q-16 i q^{2}-81 i q^{3}-256 q^{4}-1296 q^{6}+\cdots
150.10.c.c 150.c 5.b 22 77.25577.255 Q(1)\Q(\sqrt{-1}) None 30.10.a.e 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q16iq281iq3256q41296q6+q-16 i q^{2}-81 i q^{3}-256 q^{4}-1296 q^{6}+\cdots
150.10.c.d 150.c 5.b 22 77.25577.255 Q(1)\Q(\sqrt{-1}) None 6.10.a.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+16iq2+81iq3256q41296q6+q+16 i q^{2}+81 i q^{3}-256 q^{4}-1296 q^{6}+\cdots
150.10.c.e 150.c 5.b 22 77.25577.255 Q(1)\Q(\sqrt{-1}) None 30.10.a.d 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+16iq2+81iq3256q41296q6+q+16 i q^{2}+81 i q^{3}-256 q^{4}-1296 q^{6}+\cdots
150.10.c.f 150.c 5.b 22 77.25577.255 Q(1)\Q(\sqrt{-1}) None 30.10.a.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+16iq281iq3256q4+1296q6+q+16 i q^{2}-81 i q^{3}-256 q^{4}+1296 q^{6}+\cdots
150.10.c.g 150.c 5.b 22 77.25577.255 Q(1)\Q(\sqrt{-1}) None 150.10.a.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q16iq2+81iq3256q4+1296q6+q-16 i q^{2}+81 i q^{3}-256 q^{4}+1296 q^{6}+\cdots
150.10.c.h 150.c 5.b 22 77.25577.255 Q(1)\Q(\sqrt{-1}) None 30.10.a.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q16iq2+81iq3256q4+1296q6+q-16 i q^{2}+81 i q^{3}-256 q^{4}+1296 q^{6}+\cdots
150.10.c.i 150.c 5.b 22 77.25577.255 Q(1)\Q(\sqrt{-1}) None 30.10.a.f 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+16iq281iq3256q4+1296q6+q+16 i q^{2}-81 i q^{3}-256 q^{4}+1296 q^{6}+\cdots
150.10.c.j 150.c 5.b 44 77.25577.255 Q(i,274)\Q(i, \sqrt{274}) None 150.10.a.m 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+24β1q2+34β1q328q464q6+q+2^{4}\beta _{1}q^{2}+3^{4}\beta _{1}q^{3}-2^{8}q^{4}-6^{4}q^{6}+\cdots
150.10.c.k 150.c 5.b 44 77.25577.255 Q(i,6679)\Q(i, \sqrt{6679}) None 150.10.a.l 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+24β1q234β1q328q4+64q6+q+2^{4}\beta _{1}q^{2}-3^{4}\beta _{1}q^{3}-2^{8}q^{4}+6^{4}q^{6}+\cdots

Decomposition of S10old(150,[χ])S_{10}^{\mathrm{old}}(150, [\chi]) into lower level spaces