Properties

Label 150.12
Level 150
Weight 12
Dimension 1521
Nonzero newspaces 6
Sturm bound 14400
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 6 \)
Sturm bound: \(14400\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(150))\).

Total New Old
Modular forms 6712 1521 5191
Cusp forms 6488 1521 4967
Eisenstein series 224 0 224

Trace form

\( 1521 q + 96 q^{2} + 2267 q^{3} - 1024 q^{4} + 7310 q^{5} + 13664 q^{6} - 125504 q^{7} + 98304 q^{8} - 59049 q^{9} - 244928 q^{10} + 933860 q^{11} - 1823744 q^{12} - 8063382 q^{13} + 335360 q^{14} + 2525836 q^{15}+ \cdots + 362516691348 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(150))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
150.12.a \(\chi_{150}(1, \cdot)\) 150.12.a.a 1 1
150.12.a.b 1
150.12.a.c 1
150.12.a.d 1
150.12.a.e 1
150.12.a.f 1
150.12.a.g 1
150.12.a.h 1
150.12.a.i 1
150.12.a.j 2
150.12.a.k 2
150.12.a.l 2
150.12.a.m 2
150.12.a.n 2
150.12.a.o 2
150.12.a.p 2
150.12.a.q 2
150.12.a.r 2
150.12.a.s 2
150.12.a.t 3
150.12.a.u 3
150.12.c \(\chi_{150}(49, \cdot)\) 150.12.c.a 2 1
150.12.c.b 2
150.12.c.c 2
150.12.c.d 2
150.12.c.e 2
150.12.c.f 2
150.12.c.g 2
150.12.c.h 2
150.12.c.i 2
150.12.c.j 4
150.12.c.k 4
150.12.c.l 4
150.12.c.m 4
150.12.e \(\chi_{150}(107, \cdot)\) n/a 132 2
150.12.g \(\chi_{150}(31, \cdot)\) n/a 224 4
150.12.h \(\chi_{150}(19, \cdot)\) n/a 216 4
150.12.l \(\chi_{150}(17, \cdot)\) n/a 880 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(150))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(150)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)