Defining parameters
Level: | \( N \) | = | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | = | \( 12 \) |
Nonzero newspaces: | \( 6 \) | ||
Sturm bound: | \(14400\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(150))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6712 | 1521 | 5191 |
Cusp forms | 6488 | 1521 | 4967 |
Eisenstein series | 224 | 0 | 224 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(150))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
150.12.a | \(\chi_{150}(1, \cdot)\) | 150.12.a.a | 1 | 1 |
150.12.a.b | 1 | |||
150.12.a.c | 1 | |||
150.12.a.d | 1 | |||
150.12.a.e | 1 | |||
150.12.a.f | 1 | |||
150.12.a.g | 1 | |||
150.12.a.h | 1 | |||
150.12.a.i | 1 | |||
150.12.a.j | 2 | |||
150.12.a.k | 2 | |||
150.12.a.l | 2 | |||
150.12.a.m | 2 | |||
150.12.a.n | 2 | |||
150.12.a.o | 2 | |||
150.12.a.p | 2 | |||
150.12.a.q | 2 | |||
150.12.a.r | 2 | |||
150.12.a.s | 2 | |||
150.12.a.t | 3 | |||
150.12.a.u | 3 | |||
150.12.c | \(\chi_{150}(49, \cdot)\) | 150.12.c.a | 2 | 1 |
150.12.c.b | 2 | |||
150.12.c.c | 2 | |||
150.12.c.d | 2 | |||
150.12.c.e | 2 | |||
150.12.c.f | 2 | |||
150.12.c.g | 2 | |||
150.12.c.h | 2 | |||
150.12.c.i | 2 | |||
150.12.c.j | 4 | |||
150.12.c.k | 4 | |||
150.12.c.l | 4 | |||
150.12.c.m | 4 | |||
150.12.e | \(\chi_{150}(107, \cdot)\) | n/a | 132 | 2 |
150.12.g | \(\chi_{150}(31, \cdot)\) | n/a | 224 | 4 |
150.12.h | \(\chi_{150}(19, \cdot)\) | n/a | 216 | 4 |
150.12.l | \(\chi_{150}(17, \cdot)\) | n/a | 880 | 8 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(150))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_1(150)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)