Defining parameters
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.g (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(150, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 16 | 120 |
Cusp forms | 104 | 16 | 88 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(150, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
150.2.g.a | $4$ | $1.198$ | \(\Q(\zeta_{10})\) | None | \(-1\) | \(1\) | \(5\) | \(6\) | \(q+(-1+\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\) |
150.2.g.b | $4$ | $1.198$ | \(\Q(\zeta_{10})\) | None | \(1\) | \(1\) | \(5\) | \(8\) | \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+\zeta_{10}^{3}q^{3}+\cdots\) |
150.2.g.c | $8$ | $1.198$ | 8.0.1064390625.3 | None | \(2\) | \(-2\) | \(-4\) | \(-2\) | \(q-\beta _{2}q^{2}+\beta _{5}q^{3}+\beta _{5}q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(150, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)