Properties

Label 150.2.g
Level $150$
Weight $2$
Character orbit 150.g
Rep. character $\chi_{150}(31,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $16$
Newform subspaces $3$
Sturm bound $60$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 150.g (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 3 \)
Sturm bound: \(60\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(150, [\chi])\).

Total New Old
Modular forms 136 16 120
Cusp forms 104 16 88
Eisenstein series 32 0 32

Trace form

\( 16 q + 2 q^{2} - 4 q^{4} + 6 q^{5} + 2 q^{6} + 12 q^{7} + 2 q^{8} - 4 q^{9} + 4 q^{10} - 12 q^{11} + 12 q^{13} + 6 q^{15} - 4 q^{16} - 8 q^{17} - 8 q^{18} - 8 q^{19} - 4 q^{20} + 4 q^{21} - 8 q^{22} - 36 q^{23}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(150, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
150.2.g.a 150.g 25.d $4$ $1.198$ \(\Q(\zeta_{10})\) None 150.2.g.a \(-1\) \(1\) \(5\) \(6\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\)
150.2.g.b 150.g 25.d $4$ $1.198$ \(\Q(\zeta_{10})\) None 150.2.g.b \(1\) \(1\) \(5\) \(8\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+\zeta_{10}^{3}q^{3}+\cdots\)
150.2.g.c 150.g 25.d $8$ $1.198$ 8.0.1064390625.3 None 150.2.g.c \(2\) \(-2\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{2}q^{2}+\beta _{5}q^{3}+\beta _{5}q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)