Properties

Label 150.3
Level 150
Weight 3
Dimension 276
Nonzero newspaces 6
Newform subspaces 13
Sturm bound 3600
Trace bound 3

Downloads

Learn more

Defining parameters

Level: N N = 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k = 3 3
Nonzero newspaces: 6 6
Newform subspaces: 13 13
Sturm bound: 36003600
Trace bound: 33

Dimensions

The following table gives the dimensions of various subspaces of M3(Γ1(150))M_{3}(\Gamma_1(150)).

Total New Old
Modular forms 1312 276 1036
Cusp forms 1088 276 812
Eisenstein series 224 0 224

Trace form

276q8q28q3+16q6+16q7+16q8+80q9+12q10+32q11+16q12+56q134q1532q16+192q1728q18+240q19+32q208q21+160q99+O(q100) 276 q - 8 q^{2} - 8 q^{3} + 16 q^{6} + 16 q^{7} + 16 q^{8} + 80 q^{9} + 12 q^{10} + 32 q^{11} + 16 q^{12} + 56 q^{13} - 4 q^{15} - 32 q^{16} + 192 q^{17} - 28 q^{18} + 240 q^{19} + 32 q^{20} - 8 q^{21}+ \cdots - 160 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(Γ1(150))S_{3}^{\mathrm{new}}(\Gamma_1(150))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
150.3.b χ150(149,)\chi_{150}(149, \cdot) 150.3.b.a 4 1
150.3.b.b 8
150.3.d χ150(101,)\chi_{150}(101, \cdot) 150.3.d.a 2 1
150.3.d.b 2
150.3.d.c 4
150.3.d.d 4
150.3.f χ150(7,)\chi_{150}(7, \cdot) 150.3.f.a 4 2
150.3.f.b 4
150.3.f.c 4
150.3.i χ150(29,)\chi_{150}(29, \cdot) 150.3.i.a 80 4
150.3.j χ150(11,)\chi_{150}(11, \cdot) 150.3.j.a 80 4
150.3.k χ150(13,)\chi_{150}(13, \cdot) 150.3.k.a 32 8
150.3.k.b 48

Decomposition of S3old(Γ1(150))S_{3}^{\mathrm{old}}(\Gamma_1(150)) into lower level spaces