Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M3(Γ1(150)).
|
Total |
New |
Old |
Modular forms
| 1312 |
276 |
1036 |
Cusp forms
| 1088 |
276 |
812 |
Eisenstein series
| 224 |
0 |
224 |
Decomposition of S3new(Γ1(150))
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) we list available newforms together with their dimension.
Label |
χ |
Newforms |
Dimension |
χ degree |
150.3.b |
χ150(149,⋅) |
150.3.b.a |
4 |
1 |
150.3.b.b |
8 |
150.3.d |
χ150(101,⋅) |
150.3.d.a |
2 |
1 |
150.3.d.b |
2 |
150.3.d.c |
4 |
150.3.d.d |
4 |
150.3.f |
χ150(7,⋅) |
150.3.f.a |
4 |
2 |
150.3.f.b |
4 |
150.3.f.c |
4 |
150.3.i |
χ150(29,⋅) |
150.3.i.a |
80 |
4 |
150.3.j |
χ150(11,⋅) |
150.3.j.a |
80 |
4 |
150.3.k |
χ150(13,⋅) |
150.3.k.a |
32 |
8 |
150.3.k.b |
48 |
Decomposition of S3old(Γ1(150)) into lower level spaces